Browse > Article
http://dx.doi.org/10.7747/JFES.2019.35.2.121

Litter Decomposition Process in Coffee Agroforestry Systems  

Petit-Aldana, Judith (Faculty of Forestry and Environmental Science, University of the Andes)
Rahman, Mohammed Mahabubur (Department of Horticulture, City Operations, Park and Road Services, City of Edmonton)
Parraguirre-Lezama, Conrado (Natural Resources and Agroforestry Systems, Institute of Sciences, Benemerita Autonomous University of Puebla)
Infante-Cruz, Angel (Research Department, Foundation for the Development of Science and Technology of the Merida State)
Romero-Arenas, Omar (Natural Resources and Agroforestry Systems, Institute of Sciences, Benemerita Autonomous University of Puebla)
Publication Information
Journal of Forest and Environmental Science / v.35, no.2, 2019 , pp. 121-139 More about this Journal
Abstract
Decomposition of litter is a function of various interrelated variables, both biotic and abiotic factors. Litter decomposition acts like a natural fertilizer play a prime role in maintaining the productivity and nutrient cycling in agroforestry systems. There are few studies of decomposition carried out in agroforestry systems with coffee; so it is necessary to perform more research work to fill the research gap, which will allow a better understanding of the management of the coffee agroforestry systems. This paper is based on the theoretical and conceptual aspects of leaf litter decomposition in agroforestry systems, emphasizing the combination with coffee cultivation and critically examined the role of the different factors involved in the decomposition. This study made a comparison of different investigations with regards to weight loss, decomposition rates (k), initial chemical composition, and release of the main nutrients. This study suggested that it is necessary to implement studies of decomposition and mineralization, and the microflora and fauna associated with these processes, so that serves as an important tool to develop a model for enabling a description of the short, medium, and long-term dynamics of soil nutrients in coffee agroforestry systems.
Keywords
litter; decomposition; models; chemical composition; Coffea arabica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cornelissen JHC, Perez-Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143: 191-200.   DOI
2 Corre MD, Dechert G, Veldkamp E. 2006. Soil nitrogen cycling following montane forest conversion in Central Sulawesi, Indonesia. Soil Sci Soc Am J 70: 359-366.   DOI
3 Couteaux MM, Bottner P, Anderson JM, Berg B, Bolger T, Casals P, Romanya J, Thiery JM, Vallejo VR. 2001. Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: Differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry 54: 147-170.   DOI
4 da Matos ES, de Mendonca ES, Cardoso IM, de Lima PC, Freese D. 2011. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems. Rev Bras Cienc Solo 35: 141-149.   DOI
5 DaMatta F, Rodriguez N. 2007. Sustainable production of coffee in agroforestry systems in the Neotropics: an agronomic and ecophysiological approach. Agron Colomb 25: 113-123.
6 Di Stefano JF, Fournier LA. 2005. Litterfall and decomposition rates of Vochysia guatemalensis leaves in a 10 year-old plantation, Tabarcia de Mora, Costa Rica. Agron Costarricense 29: 9-16.
7 Diaz M. 2009. Production, decomposition of litterfall and shredder macroinvertebrates, in four agroecosystems of La Vieja river basin. MS thesis. Universidad Tecnologica de Pereira, Pereira, Colombia.
8 Duarte EMG, Cardoso IM, Stijnen T, Mendonca MAFC, Coelho MS, Cantarutti RB, Kuyper TW, Villani EMA, Mendonca ES. 2013. Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agrofor Syst 87: 835-847.   DOI
9 Tian G, Kang BT, Brussaard L. 1992. Effects of chemical composition on N, Ca, and Mg release during incubation of leaves from selected agroforestry and fallow plant species. Biogeochem 16: 103-119.   DOI
10 Tietema A, Wessel WW. 1994. Microbial activity and leaching during initial oak leaf litter decomposition. Biol Fertil Soil 18: 49-54.   DOI
11 Van Cleve K. 1971. Energy- and weight-loss functions for decomposing foliage in birch and aspen forests in interior Alaska. Ecology 52: 720-723.   DOI
12 Vilas BO, Imbach AC, Mazzarino MJ, Bonnemann A, Beer J. 1993. Litter decomposition in agroforestry systems of Cordia and Erythrina en Turrialba, Costa Rica. In: Congreso Forestal Espanol 1993; Pontevedra, Spain; pp 343-350.
13 Weerakkody J, Parkinson D. 2006a. Input, accumulation and turnover of organic matter, nitrogen and phosphorus in surface organic layers of an upper montane rainforest in Sri Lanka. Pedobiologia 50: 377-383.   DOI
14 Villavicencio-Enriquez L. 2012. Production, weight loss and decomposition rates of leaf litter in traditional and rustic coffee systems and medium tropical forest in Veracruz, Mexico. Rev Chapingo Ser Cie 18: 159-173.
15 Wang Q, Wang S, Huang Y. 2008. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. For Ecol Manag 255: 1210-1218.   DOI
16 Wardle DA, Bonner KI, Nicholson KS. 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79: 247-258.   DOI
17 Weerakkody J, Parkinson D. 2006b. Leaf litter decomposition in an upper montane rainforest in Sri Lanka. Pedobiologia 50: 387-395.   DOI
18 Wieder RK, Lang GE. 1982. A critique of the analytical methods used in examining decomposition data. Ecology 63: 1636-1642.   DOI
19 Escobar M. 1990. Nitrogen dynamics alley cropping poro (Erytrina poeppigiana (Walpers)) and Madero negro (Gliricidia sepium (Jacq)) with common bean (Phaseolus vulgaris). MS thesis. CATIE, Turrialba, Costa Rica, pp 98.
20 Dutta RK, Agrawal M. 2001. Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. Pedobiologia 45: 298-312.   DOI
21 Farfan VF. 2014. Agroforestry and coffee agroforestry, Manizales, Caldas (Colombia). pp 342.
22 Farfan VF, Urrego JB. 2007. Decomposition of leaf litter and nutrient release from Coffea arabica Cordia alliodora Pinus oocarpa and Eucalyptus grandis in agroforestry systems with coffee. Cenicafe 58: 20-39 (in Spanish with English abstract).
23 Fassbender HW. 1987. Soil models of agroforestry systems, Turrialba. pp 491.
24 Feng Y. 2009. K-model-a continuous model of soil organic carbon dynamics: theory. Soil Sci 174: 482-493.   DOI
25 Field JA, Lettinga G. 1992. Toxicity of Tannic Compounds to Microorganisms. In: Plant Polyphenols. Synthesis, Properties, Significance. (Hemingway RW, Laks PE, eds). Plenum Press, New York, pp 673-692.
26 Fioretto A, Di Nardo C, Papa S, Fuggi A. 2005. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37: 1083-1091.   DOI
27 Flanagan PW, van Cleve K. 1983. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can J For Res 13: 795-817.   DOI
28 Flores P, Antonio D, Alvarez S, de Jesus O. 2006. Production, decomposition and release of nutrients from litter under coffee in full sun and with shade of Gliricidia sepium (Jacq) in Carazo, Nicaragua. Thesis. National Agrarian University, Nicaragua. pp 10-20. Spanish.
29 Wilson JO, Buchsbaum R, Valiela I, Swain T. 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Mar Ecol Prog Ser 29: 177-187.   DOI
30 Woodwell GM, Marples TG. 1968. The influence of chronic gamma irradiation on the production and decay of litter and humus in an oak-pine forest. Ecol 49: 456-465.   DOI
31 Handanyanto E, Cadisch G, Giller KE. 1994. Nitrogen release from prunings of legume hedgerow trees in relation to quality of the prunings and incubation method. Plant and Soil 160: 237-248.   DOI
32 Xuluc-Tolosa FJ, Vester HFM, Ramirez-Marcial N, Castellanos-Albores J, Lawrence D. 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. For Ecol Manag 174: 401-412.   DOI
33 Gallardo A, Merino J. 1993. Leaf decomposition in two Mediterranean ecosystems of southwest Spain: Influence of substrate quality. Ecology 74: 152-161.   DOI
34 Giller KE, Wilson KJ. 1991. Nitrogen Fixation in Tropical Cropping Systems. CAB International, Wallingford, UK, pp 167-237.
35 Goma-Tchimbakala J, Bernhard-Reversat F. 2006. Comparison of litter dynamics in three plantations of an indigenous timber-tree species (Terminalia superba) and a natural tropical forest in Mayombe, Congo. For Ecol Manag 229: 304-313.   DOI
36 Halvorson JJ, Gonzalez MJ, Hagerman AE, Smith JL. 2009. Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol Biochem 41: 2002-2010.   DOI
37 Harborne JB. 1997. Role of phenolic secondary metabolics in plants and their degradation in nature. In: Driven by nature: plant litter quality and decomposition (Cadisch G, Giller KE, eds). CAB International, Wallingford, pp 67-74.
38 Harmon ME, Krankina ON, Sexton J. 2000. Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J For Res 30: 76-84.   DOI
39 Hattenschwiler S, Vitousek PM. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15: 238-243.   DOI
40 Hartemink AE. 2005. Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: a review. Adv Agron 86: 227-253.   DOI
41 Forney D, Rothman D. 2007. Decomposition of soil organic matter from physically derived decay rates. In: AGU Fall Meeting; San Francisco, CA; 2007.
42 Howard PJA, Howard DM. 1974. Microbial decomposition of tree and shrub leaf litter. 1. Weight loss and chemical composition of decomposing litter. Oikos 25: 341-352.   DOI
43 Hirobe M, Sabang J, Bhatta BK, Takeda H. 2004. Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. J For Res 9: 341-346.   DOI
44 Hoorens B, Aerts R, Stroetenga M. 2003. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137: 578-586.   DOI
45 Horner JD, Gosz JR, Cates RG. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132: 869-883.   DOI
46 Isaac ME, Gordon AM, Thevathasan N, Oppong SK, Quashie-Sam J. 2005. Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65: 23-31.   DOI
47 Jaramillo C. 2007. Shade coffee plants behavior and litter fall dynamics under agroforestry systems conditions. MS thesis. Universidade Federal de Vicosa, Avenida Peter Henry Rolfs, Brasil. pp 87.
48 Kraus TEC, Yu Z, Preston CM, Dahlgren RA, Zasoski RJ. 2003. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J Chem Ecol 29: 703-730.   DOI
49 Jenny H, Gessel SP, Bingham FT. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68: 419-432.   DOI
50 Kavvadias VA, Alifragis D, Tsiontsis A, Brofas G, Stamatelos G. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For Ecol Manage 144: 113-127.   DOI
51 Lavelle P, Spain AV. 2005. Soil Ecology. Springer, Dordrecht, pp 404-423.
52 Kurz-Besson C, Couteaux MM, Thiery JM, Berg B, Remacle J. 2005. A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement. Soil Biol Biochem 37: 2315-2318.   DOI
53 Lang GE. 1973. Litter accumulation through ecosystem development. Dissertation. Rutgers University, New Brunswick, New Jersey, USA.
54 Lavelle P, Blanchart E, Martin A, Martin S, Spain A. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25: 130-150.   DOI
55 Lopez-Gutierrez JC, Toro M, Lopez-Hernandez. 2001. Arbuscular mycorrhizae and enzymatic activity in the rhizosphere of Trachypogon plumosus Ness in three acid savanna soils. Acta Biol Venez 21: 49-57 ( in Spanish with English abstract).
56 Lousier JD, Parkinson D. 1976. Litter decomposition in a cool temperate deciduous forest. Can J Bot 54: 419-436.   DOI
57 Moser G, Leuschner C, Hertel D, Holscher D, Kohler M, Leitner D, Michalzik B, Prihastanti E, Tjitrosemito S, Schwendenmann L. 2010. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agrofor Syst 79: 171-187.   DOI
58 Madritch MD, Hunter MD. 2004. Phenotypic diversity and litter chemistry affect nutrient dynamics during litter decomposition in a two species mix. Oikos 105: 125-131.   DOI
59 Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecol 63: 621-626.   DOI
60 Montagnini FY, Jordan CF. 2002. Nutrient recycling. In: Ecology and conservation of neotropical forest (Guariguata MR, Kattan G, eds). Editorial tecnologica, Cartago, Costa Rica, pp 167-191.
61 Oliver L, Perez-Corona ME, Bermudez de Castrol CF. 2002. Litter decomposition in oligotrophic Mediterranean grassland in the center of the Iberian Peninsula. Anales de Biol 24: 21-32.
62 Mungia R, Harmand M, Beer J, Haggar J. 2004. Decomposition and nutrient release rates of Eucalyptus deglupta and Coffea arabica litter and Erythrina poeppigiana green leaves alone or mixed. Agroforesteria en las Americas 41-42: 62-68.
63 Nair PKR. 1993. An introduction to agroforestry. Kluwer Academic Publisher, Dordrecht, The Netherlands, pp 499.
64 Nair PKR, Buresh RJ, Mugendi DN, Latt CR. 1999. Nutrient cycling in tropical agroforestry systems: myths and science. In: Agroforestry in Sustainable Agricultural Systems (Buck LE, Lassoie JP, Fernandes ECM, eds). CRC Press, Boca Raton, FL, pp 1-31.
65 Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecol 44: 322-331.   DOI
66 Pereira AP, Graca MAS, Molles M. 1998. Leaf litter decomposition in relation to litter physico-chemical properties, fungal biomass, arthropod colonization, and geographical origin of plant species. Pedobiologia 42: 316-327.
67 Pal D, Broadbent FE. 1975. Kinetics of rice straw decomposition in soils. J Environ Qual 4: 256-260.   DOI
68 Palm CA, Sanchez PA. 1990. Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica 22: 330-338.   DOI
69 Paul EA, Clark FE. 1996. Soil microbiology and biochemistry. Academic Press Inc., San Diego, USA, pp 340.
70 Petit-Aldana J, Uribe-Valle G, Casanova-Lugo F, Solorio-Sanchez J, Ramirez-Aviles L. 2012. Decomposition and nutrient release patterns of leaves of Leucaena leucocephala (Lam.) de Wit, Guazuma ulmifolia Lam. and Moringa oleifera Lam. in a mixed fodder bank. Rev Chapingo Ser Cie 18: 5-25.
71 Aerts R, de Caluwe H. 1997. Initial litter respiration as indicator for long-term leaf litter decomposition of carex species. Oikos 80: 353-361.   DOI
72 Aber JD, Melillo JM. 1991. Terrestrial Ecosystems. Saunders College Publishing, Philadelphia, pp. 200-205.
73 Aber JD, Melillo JM, McClaugherty CA. 1990. Predicting longterm patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68: 2201-2208.   DOI
74 Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439-449.   DOI
75 Anderson J, Flanagan P, Caswell E, Coleman D, Cuevas E, Freckman D, Jones J, Lavelle P, Vitousek P. 1989. Biological processes regulating organic matter dynamics in tropical soils. In: Dynamics of Soil Organic Matter in Tropical Ecosystems. (Coleman D, Malcolm J, Vehara G, eds). NIFTAL, University of Hawaii, Honolulu, pp 111-117.
76 Aponte C, Garcia LV, Maranon T. 2012. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems 15: 1204-1218.   DOI
77 Arellano R, Paolini J, Vasquez L, Mora E. 2004. [Litter production and decomposition in three coffee agroecosystems in Trujillo State, Venezuela]. Rev For Venez 48: 7-14. Spanish.
78 Romero Lara CE, Palma Garciay JM, Lopez J. 2000. The influence of grazing on the concentration of total phenols and condensed tannins in Gliricidia sepium in the dry tropics. Livest Res Rural Dev 12: 39-50.
79 Rahman MM, Motiur MR. 2012. Quantitative chemical defense traits, litter decomposition and forest ecosystem functioning. In: Forest Ecosystems- More than Just Tree (Blanco JA, Lo YH, eds). InTech publication, EU, pp 295-314.
80 Rahman MM, Petit-Aldana J, Tsukamoto J, Wu QS. 2017. Litter chemistry, decomposition and its effects on soil biogeochemistry of forest ecosystems. In: Forest Ecosystems: Management, Impact Assessment and Conservation (Elliott D, ed). Nova Publication, New York, USA, pp 21-44.
81 Rovira P, Rovira R. 2010. Fitting litter decomposition datasets to mathematical curves: towards a generalised exponential approach. Geoderma 155: 329-343.   DOI
82 Singh JS, Gupta SR. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43: 449-528.   DOI
83 Baldwin IT, Schultz JC. 1984. Tannins lost from sugar maple (Acer saccharum Marsh) and yellow birch (Betula allegheniensis Britt.) leaf litter. Soil Biol Biochem 16: 421-422.   DOI
84 Russo R, Budowsky G. 1986. Effect of pollarding frequency on biomasa of Erythrina poeppigiana as a coffee shade tree. Agrofor Syst 4:145-162.   DOI
85 Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J, Salinas D, Huaman V, Gibaja A, Mamani M, Farfan F. 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol 189: 967-977.   DOI
86 Salisbury FB, Ross CW. 1994. Fisiologia vegetal. 4th ed. Grupo Editorial Iberoamerica, Mexico, pp 759.
87 Siebert SF. 2002. From shade- to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodivers Conserv 11: 1889-1902.   DOI
88 Berg B, Hannus K, Popoff T, Theander O. 1982. Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest. I. Can J Bot 60: 1310-1319.   DOI
89 Berg B. 2014. Foliar litter decomposition: a conceptual model with focus on pine (Pinus) litter--a genus with global distribution. ISRN For 2014: 838169.
90 Berg B, Ekbohm G. 1991. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII. Can J Bot 69: 1449-1456.   DOI
91 Berg B, McClaugherty C. 2003. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Berlin Heidelberg, Berlin, 286 pp.
92 Berg B, McClaugherty C. 2014. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin, pp 23.
93 Bunell F, Tait DEN, Flanagan PW, Van Clever K. 1977. Microbial respiration and substrate weight loss-I: A general model of the influence of abiotic variables. Soil Biol Biochem 9:33-40.   DOI
94 Cadisch G, Giller KE. 1997. Driven by nature: Plant litter quality and decomposition. CAB International, Wallingford, 409 pp.
95 Cardona CDA, Sadeghian KHS. 2005. Cycle of nutrients and microbial activity in coffee plantations to free solar exposition and with shade of Inga spp. Cenicafe 56: 127-141.
96 Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR. 2004. Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environ Manage 33: 299-308.
97 Swift MJ, Anderson JM. 1989. Decomposition. In: Tropical rain forest ecosystems: biogeographical and ecological studies (Lieth H, Werger MJA, eds). Elsevier Science, New York, pp 547-569.
98 Slade EM, Riutta T. 2012. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl Ecol 13: 423-431.   DOI
99 Staver C, Guharay F, Monterroso D, Muschler RG. 2001. Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53: 151-170.   DOI
100 Swain T, Bate-Smith EC. 1962. Flavonoid Compounds. In: Comparative Biochemistry (Florkin M, Mason HS, eds). Academic Press, New York. pp 755-809.
101 Tenney FG, Waksman SA. 1929. Composition of natural organic materials and their decomposition in the soil. 4. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Sci 28: 55.   DOI
102 Swift MJ, Anderson JM, Heal OW. 1979. Decomposition in terrestrial ecosystems. University of California Press, San Francisco, USA, pp 371.
103 Teklay T. 2007. Decomposition and nutrient release from pruning residues of two indigenous agroforestry species during the wet and dry seasons. Nutr Cycl Agroecosyst 77: 115-126.   DOI
104 Teklay T, Malmer A. 2004. Decomposition of leaves from two indigenous trees of contrasting qualities under shaded-coffee and agricultural land-uses during the dry season at Wondo Genet, Ethiopia. Soil Biol Biochem 36: 777-786.   DOI
105 Tian G, Brussaard L, Kang BT. 1993. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biol Biochem 25: 731-737.   DOI