Browse > Article
http://dx.doi.org/10.7747/JFS.2014.30.3.307

Phylogenetic Analysis of Pines Based on Chloroplast trnT-trnL Intergenic Spacer DNA Sequences  

Um, Yurry (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Park, Won-Kyu (Department of Wood & Paper Science, Chungbuk National University)
Jo, Nam-Su (Department of Industrial Plant Science & Technology, Chungbuk National University)
Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute)
Lee, Yi (Department of Industrial Plant Science & Technology, Chungbuk National University)
Publication Information
Journal of Forest and Environmental Science / v.30, no.3, 2014 , pp. 307-313 More about this Journal
Abstract
This study was conducted to distinguish the pines that are too similar to differentiate using conventional methods. Pinus densiflora and Pinus sylvestris have similar anatomical structure. They both have window-like pits and dentate ray tracheids, so it is not easy to distinguish the plants. We tried to find molecular markers by comparing chloroplast DNA sequences to differentiate the pines growing in Korea. We used P. densiflora, P. densiflora for. multicaulis, P. sylvestris, P. rigida, P. rigitaeda, P. koraiensis, and P. bungeana for this study. We found that the non-coding intergenic region of trnT(UGU) and trnL(UAA) genes have differences among the species. We designed a primer set to amplify the region efficiently and compared the PCR product sequences using CLC Workbench programs to find the polymorphism. We could distinguish the species using the sequences of the amplified region and the sequences were reproducible from the pines collected in Korea.
Keywords
Pines; trnT-trnL Intergenic Spacer; SNPs; Genetic diversity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang XR, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences. Am J Bot 86: 1742-1753.   DOI
2 Shin WC, Baek SH, Seo CS, Kang HJ, Kim CK, Shin MS, Lee GS, Hahn JH, Kim HS. 2006. Improvement of Selection Efficiency for Bacterial Blight Resistance Using SNP Marker in Rice. J Plant Biotechnol 33: 309-313.   DOI
3 Plomion C, Chagne D, Pot D, Kumar S, Wilcox PL, Burdon RD, Prat D, Peterson DG, Paiva J, Aumeil P et al. 2007. Pines. In: Genome Mapping and Molecular Breeding in Plants, Vol. 7 Forest Trees, C. Kole (Ed.) Springer-Verlag Berlin Heidelberg. pp. 29-92.
4 Powell W, Machray GC, Provan J. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1: 215-222.   DOI   ScienceOn
5 Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R. 2006. Extraction, amplification and characterization of wood DNA from dipterocarpaceae. Plant Mol Biol Rep 24: 45-55.   DOI
6 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.   DOI   ScienceOn
7 Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE. 1992. Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology (N Y) 10: 686-690.   DOI
8 Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G. 2000. Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43: 68-78.   DOI
9 Wagner DB, Nance WL, Nelson CD, Li T, Patel RN, Govindaraju DR. 1992. Taxonomic patterns and inheritance of chloroplast DNA variation in a survey of Pinus echinata, Pinus elliottii, Pinus palustris and Pinus taeda. Can J Forest Res 22: 683-689.   DOI
10 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. 2005. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102: 8369-8374.   DOI   ScienceOn
11 Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, Van Der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ. 2009. A DNA barcode for land plants. Proc Natl Acad Sci U S A 106: 12794-12797.   DOI   ScienceOn
12 Kim C, Jung J, Na HR, Kim SW, Li W, Kadono Y, Shin H, Choi HK. 2012a. Population Genetic Structure of the Endangered Brasenia schreberi in South Korea Based on Nuclear Ribosomal Spacer and Chloroplast DNA Sequences. J Plant Biol 55: 81-91.   DOI
13 Kim HB, Jeon JH, Han AR, Lee Y, Jun SS, Kim TH, Cho GH, Park PB. 2012b. Genetic evaluation of domestic walnut cultivars trading on Korean tree markets using microsatellite markers. Afr J Biotechnol 11: 7366-7374.
14 Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R. 2003. Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breeding 11: 127-136.   DOI
15 Alvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29: 417-434.   DOI   ScienceOn
16 Michel F, Dujon B. 1983. Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members. EMBO J 2: 33-38.
17 Neale DB, Williams CG. 1991. Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can J Forest Res 21: 545-554.   DOI
18 Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR. 1988. Chloroplast DNA variation and plant phylogeny. Annals of the Missouri Botanical Garden 75: 1180-1206.   DOI   ScienceOn
19 Cech TR. 1988. Conserved sequences and structures of group I introns: building an active site for RNA catalysis--a review. Gene 73: 259-271.   DOI
20 Cervera MT, Remington D, Frigerio JM, Storme V, Ivens B, Boerjan W, Plomion C. 2000. Improved AFLP analysis of tree species. Can J Forest Res 30: 1608-1616.   DOI
21 Clegg MT, Learn GH, Golenberg EM. 1991. Molecular evolution of chloroplast DNA. In: Evolution at the molecular level (Selander RK, Clark AG, Whittam TS, eds). Sinauer Associates, Sunderland, pp. 135-149.
22 Devey ME, Bell JC, Smith DN, Neale DB, Moran GF. 1996. A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92: 673-679.   DOI
23 Devey ME, Fiddler TA, Liu BH, Knapp SJ, Neale DB. 1994. An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree. Theor Appl Genet 88: 273-278.
24 Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17: 1105-1109.   DOI   ScienceOn
25 Echt CS, Deverno LL, Anzidei M, Vendramin GG. 1998. Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7: 307-316.   DOI   ScienceOn
26 Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SC. 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3: e2802.   DOI   ScienceOn
27 Gernandt DS, Lopez GG, Garcia SO, Liston A. 2005. Phylogeny and classification of Pinus. Taxon 54: 29-42.   DOI   ScienceOn
28 Morgante M, Felice N, Vendramin GG. 1997. Analysis of hypervariable chloroplast microsatellite in Pinus halepensis reveals a dramatic genetic bottleneck. In: Molecular Tools for Screening Biodiversity (Karp A, Isaac PG, Ingram DS, eds). Springer Netherlands, Dordrecht, pp. 407-412.