Browse > Article
http://dx.doi.org/10.11002/kjfp.2011.18.6.1002

Effect of the extracts from Schisandra chinensis Fruit and Morus alba Leaf on Insulin Secretion in Glucose-induced HIT-T15 Cells  

Jeong, Yoo-Seok (Biohealthconvergency Center, Daegu Technopark)
Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
Jung, Hee-Kyoung (Biohealthconvergency Center, Daegu Technopark)
Publication Information
Food Science and Preservation / v.18, no.6, 2011 , pp. 1002-1008 More about this Journal
Abstract
This study aimed to examine the effect of the Schizandra chinensis fruit and Morus alba leaf on insulin expression in HIT-T15 cells, which is exposed by glucose. The total polyphenol contents of the S. chinensis fruit ethanol extract and the M. alba leaf hot-water extract were $20.11{\pm}0.35$ mg/g and $50.02{\pm}0.62$ mg/mL, respectively. The S. chinensis fruit ethanol extract and the M. alba leaf hot-water extract contained $2.85{\pm}0.15$ and $8.76{\pm}0.43$ mg/g flavonoids, respectively. The antioxidant ability of the M. alba leaf hot-water extract was found to be superior to that of the S. chinensis fruit ethanol extract. Compared to the HIT-T15-treated 10 mM 2-deoxy-D-glucose, the $100{\mu}g/mL$ S. chinensis ethanol extract was found to have a two fold increase in insulin productivity. Moreover, the $100{\mu}g/mL$ M. alba leaf hot-water extract promoted the insulin secretion of high-glucose-damaged HIT-T15 almost ten fold. The above results showed that the S. chinensis fruit ethanol extract and M. alba leaf hot-water extract may improve the insulin productivity of the beta cell with glucose-induced oxidative damage. These data suggest that the S. chinensis fruit ethanol extract and the M. alba leaf hot-water extract can be used as food materials for the regulation of insulin secretion.
Keywords
Schizandra chinensis; Morus alba; HIT-T15; insulin secretion;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Lee EJ, Kim JS, Kwon JH (2008) Optimization of microwave-assisted extraction conditions for total catechin and electron donating ability of grape seed extracts. Korean J Food Preserv, 15, 840-846
2 Talcott ST, Lee JH (2002) Ellagic acid and flavonoid antioxidant content of mascadine wine and juice. J Agri Food Chem, 50, 3186-3192   DOI   ScienceOn
3 Leng SH, Lu FE, XU LJ (2004) Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin, 25, 496-502
4 Kim JH, Jeong CH, Choi GN, Kwak JH, Choi SG, Heo HJ (2009) Antioxidant and Neuronal cell protective effects of Methanol extract from Schizandra chinensis using an in vitro system. Korean J Food Sci Technol, 41, 712-716
5 Kim CJ, Suh HJ (2005) Antioxidant activities of Rhubarb extracts containing phenolic compounds. Korean J Food Culture, 20, 77-85
6 Cho YJ, Chun SS, Kwon HJ, Kim JH, Lee KH, An BJ Choo JW (2006) Inhibitory effects of water and 80% Ethanol extracts from Mulberry leaves(Morus alba L) on angiotensin converting enzyme and xanthine oxidase. J Korean Soc Appl Biol Chem, 49, 114-124
7 Villano D, Fernandez-Pachon MS, Moya ML, Troncoso AM, Garcia-Parrilla MC (2007) Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 71, 230-235   DOI   ScienceOn
8 Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, Stengard J, Kesaniemi YA (1992) Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 35, 1060-1067   DOI   ScienceOn
9 Butler AE, Janson J, Susan BW, Rizzan RA, Butler PC (2003) $\beta$-Cell deficit and increased $\beta$-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102-110   DOI   ScienceOn
10 Paul R, Jamie H, Phuong OT, Yoshito T, Hiroki T (2003) Glucose Toxicity in $\beta$-Cells: Type 2 Diabetes, Good Radicals Gone Bad, and the Glutathione Connection. Diabetes, 52, 581-587   DOI   ScienceOn
11 Abir TE, Amany A, Amal JF (2005) Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res, 52, 264-270   DOI   ScienceOn
12 Paul R, Jamie H, Phuong OT, Vincent P (2004) $\beta$-Cell Glucose Toxicity, Lipotoxicity and Chronic Oxidative Stress in Type 2 Diabetes. Diabetes, 53, 5119-5124
13 Rodney CR, Roger BM (2001) Use of Antioxidant Nutrients in the Prevention and Treatment of Type 2 Diabetes. J Am Coll Nutr, 20, 363-369   DOI
14 Hancke JL, Burgos RA, Ahumada F (1999) Schisandra chinensis(Turcz) Baill. Fitoterapia, 70, 451-471   DOI   ScienceOn
15 Cho YJ, Ju IS, Kin BC, Lee WS, Kim MJ, Lee BG, An BJ, Kim JH, Kwon OJ (2007) Biological activity of Omija(Schizandra chinessis Bailon). J Korean Soc Appl Biol Chem, 50, 193-203
16 Rho SN, Oh HS (2002) Effect of Omija(Schizandra chinensis Baillon) extracts on the growth of liver cancer cell line SNU-398. Korean J Nutr, 35, 201-206
17 Choi JH, Kim DI, Park SH, Kim DW, Lee JS, Ryu KS, Lee WC (1999) Effect of Mulberry leaf extract on oxygen radicals and their scavenger enzymes in serum of rats. Korean J Seric Sci, 41, 135-140
18 Do GP, Lee HJ, Do JR, Kim HK (2011) Inhibition of adipogenesis in 3t3-L1 adipocytes with water and ethanol extracts of Curdrania tricuspidata leaves. Korean J Food Preserv, 18, 244-249   DOI
19 Kim SH, Kim YM (2007) Determination of the antioxidant capacity of korean ginseng using an ORAC assay. J East Asian Soc Dietary Life, 17, 393-401
20 Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacorb R (2003) Assays for hydrophlic and lipophilic antioxidant capacity oxygen radical absorbance capacity (ORAC) of plasma and other biological and food samples. J Agri Food Chem, 51, 3273-3279   DOI   ScienceOn
21 Unger J (2008) Reducing oxidative stress in patients with type 2 diabetes mellitus: a primary care call to action. Insulin, 3, 176-184   DOI   ScienceOn
22 Feillet-Coudraya C, Rock E, Coudray C, Grzelkowska K, Azais-Braesco V, Dardevet D, Mazur A (1999) Lipid peroxidation and antioxidant status in experimental diabetes. Clinica Chimica Acta, 284, 31-43   DOI   ScienceOn
23 Jung GT, Ju IO, Choi JS (1998) Studies on drying and preservation of Omija(Schizandra chinensis BAILL.). Korean J Food Preserv, 5, 217-223
24 Robertson RP, Zhang HJ, Pyzdrowski KL, Walseth TF (1992) Preservation of Insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest, 90, 320-325   DOI
25 Lee YJ, Suh KS, Choi MC, Chon S, Oh SJ, Woo JT, Kim SW, Kim JW, Kim YS (2010) Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-d-riboseinduced oxidative damage. Phytother Res, 24, 419-423   DOI   ScienceOn
26 Robertson RP, Zhang HJ, Kathryn LP, Timothy FW (1992) Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest, 90, 320-325   DOI
27 Jo SH, Ha KS, Moon KS, Lee OH, Jang HD, Kwon YI (2011) In Vitro and in vivo anti-hyperglycemic effects of Omija(Schizandra chinensis) Fruit. Int J Mol Sci, 12, 1359-1370   DOI   ScienceOn
28 Andallu, B, Varadacharyulu NC (2003). Antioxidant role of mulberry(Morus indica L. cv. Anantha)leaves in streptozotocin-diabetic rats. Clinica Chimica Acta, 338, 3-10   DOI   ScienceOn
29 Kim SY, Ryu KS, Lee WC, Ku HO, Lee HS, Lee KR (1999) Hypolycemic effect of Mulberry leaves with anaerobic treatment in allozan-induced diabetic Mice. Kor J Pharmacogn, 30, 123-129
30 Kim SI, Sim KH, Ju SY, Han YS (2009) A study of antioxidative and hypoglycemic activities of Omija(Schizandra chinensis Baillon) extract under variable extract conditions. Korean J Food and Nutr, 22, 41-47
31 Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Viticult, 16, 144-158
32 Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64, 555-559   DOI   ScienceOn