Browse > Article
http://dx.doi.org/10.3746/jkfn.2017.46.7.790

Effect of Fermented Cirsium japonicum Extract on Testosterone Deficiency Syndrome  

Jeong, Byung Seo (Department of Biomedical Science, Jungwon University)
Kim, Seong Hoon (Department of Biomedical Science, Jungwon University)
Kim, Hyun Pyo (Department of Biomedical Science, Jungwon University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.46, no.7, 2017 , pp. 790-800 More about this Journal
Abstract
As men get older, total testosterone levels decline gradually, and concentrations of free and bioavailable testosterone decline sharply with each decade beyond their 30s. Andropause or testosterone deficiency syndrome (TDS) is defined as a decrease in sexual satisfaction or decline in general well-being accompanied by low levels of testosterone in older men. This male climacteric is characterized by nervousness, reduced potency, decreased libido, irritability, fatigue, depression, memory problems, sleep disturbances, and hot flushes. Cirsium japonicum (CJ) is used as a traditional medicine for hemorrhage, blood congestion, and inflammation in Korea. However, there is no report on the efficacy of CJ treatment for TDS. In this study, we observed the mitigating effect of CJ extract (CE) and fermented CJ extract (FCE) on symptoms of TDS. In elderly male rats, total and testosterone levels, hind limbs muscles, forced swimming time, and total and motile sperm counts significantly increased after daily intake of CE and FCE for 6 weeks. In contrast, sex hormone binding globulin, retroperitoneal fat, total serum cholesterol, and triglyceride levels were significantly reduced in CE and FCE groups. However, there was no difference in prostate specific antigen, aspartate aminotransferase, and alanine aminotransferase levels among all groups, which means CE and FCE did not have putative adverse effects. In a cell experiment, we also observed that CE and FCE enhanced expression of genes related to testosterone biosynthesis but reduced genes involved in testosterone conversion. On the whole, these positive effects on TDS were greater in FCE compared to CE. Thus, these results suggest the potential of FCE as a promising natural product for recovering testosterone levels and alleviating TDS.
Keywords
male climacteric syndrome; Cirsium japonicum; testosterone; testosterone deficiency syndrome; andropause;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Lee YM, Hwang IY, Lee EB, Jeong CS. 2011. Antigastritic and antiulcerative effects of Cirsium japonicum var. ussuriense extract and fractions. Yakhak Hoeji 55: 160-167.
2 Kong BM, Park MJ, Min JW, Kim HB, Kim SH, Kim SY, Yang DC. 2008. Physico-chemical characteristics of white, fermented and red ginseng extracts. J Ginseing Res 32: 238-243.   DOI
3 Choi WS, Kwon HS, No RH, Choi GP, Lee HY. 2013. Enhancement of anti-inflammatory activities of fermented Scutellaria baicalensis extracts using Lactobacillus rhamnosus. J Soc Cosmet Scientists Korea 39: 303-311.   DOI
4 Ryu IH, Kwon TO. 2012. Enhancement of piperidine alkaloid contents by lactic acid fermentation of mulberry leaves (Morus alba L.). Korean J Med Crop Sci 20: 472-478.   DOI
5 Gutfinger T. 1981. Polyphenols in olive oils. J Am Oil Chem Soc 58: 966-967.   DOI
6 Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Enthropharmacol 71: 109-114.   DOI
7 Beecher GR. 2003. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133: 3248S-3254S.   DOI
8 Podlasek CA, Mulhall J, Davies K, Wingard CJ, Hannan JL, Bivalacqua TJ, Musicki B, Khera M, González-Cadavid NF, Burnett AL 2nd. 2016. Translational perspective on the role of testosterone in sexual function and dysfunction. J Sex Med 13: 1183-1198.   DOI
9 Kunutsor SK, Apekey TA, Seddoh D, Walley J. 2014. Liver enzymes and risk of all-cause mortality in general populations: a systematic review and meta-analysis. Int J Epidemiol 43: 187-201.   DOI
10 Corradi PF, Corradi RB, Greene LW. 2016. Physiology of the hypothalamic pituitary gonadal axis in the male. Urol Clin North Am 43: 151-162.   DOI
11 Thao NT, Cuong TD, Hung TM, Lee JH, Na M, Son JK, Jung HJ, Fang Z, Woo MH, Choi JS, Min BS. 2011. Simultaneous determination of bioactive flavonoids in some selected Korean thistles by high-performance liquid chromatography. Arch Pharm Res 34: 455-461.   DOI
12 Shea JL, Wong PY, Chen Y. 2014. Free testosterone: clinical utility and important analytical aspects of measurement. Adv Clin Chem 63: 59-84.
13 Li W, Pandey AK, Yin X, Chen JJ, Stocco DM, Grammas P, Wang X. 2011. Effects of apigenin on steroidogenesis and steroidogenic acute regulatory gene expression in mouse Leydig cells. J Nutr Biochem 22: 212-218.   DOI
14 Hiipakka RA, Zhang HZ, Dai W, Dai Q, Liao S. 2002. Structure-activity relationships for inhibition of human $5{\alpha}$-reductases by polyphenols. Biochem Pharmacol 63: 1165- 1176.   DOI
15 Moshtaghion SM, Malekinejad H, Razi M, Shafie-Irannejad V. 2013. Silymarin protects from varicocele-induced damages in testis and improves sperm quality: evidence for E2f1 involvement. Syst Biol Reprod Med 59: 270-280.   DOI
16 Cooper LA, Page ST, Amory JK, Anawalt BD, Matsumoto AM. 2015. The association of obesity with sex hormonebinding globulin is stronger than the association with ageing - implications for the interpretation of total testosterone measurements. Clin Endocrinol (Oxf) 83: 828-833.   DOI
17 Laurent MR, Helsen C, Antonio L, Schollaert D, Joniau S, Vos MJ, Decallonne B, Hammond GL, Vanderschueren D, Claessens F. 2016. Effects of sex hormone-binding globulin (SHBG) on androgen bioactivity in vitro. Mol Cell Endocrinol 437: 280-291.   DOI
18 Xia F, Wang N, Han B, Li Q, Chen Y, Zhu C, Chen Y, Pu X, Cang Z, Zhu C, Lu M, Meng Y, Guo H, Chen C, Lin D, Zheng J, Kuang L, Tu W, Li B, Hu L, Shen Z, Lu Y. 2017. Hypothalamic-pituitary-gonadal axis in aging men and women: Increasing total testosterone in aging men. Neuroendocrinology 104: 291-301.   DOI
19 Handelsman DJ, Sikaris K, Ly LP. 2016. Estimating agespecific trends in circulating testosterone and sex hormonebinding globulin in males and females across the lifespan. Ann Clin Biochem 53: 377-384.   DOI
20 Owen RC, Elkelany OO, Kim ED. 2015. Testosterone supplementation in men: a practical guide for the gynecologist and obstetrician. Curr Opin Obstet Gynecol 27: 258-264.   DOI
21 McGrath S, Christidis D, Perera M, Hong SK, Manning T, Vela I, Lawrentschuk N. 2016. Prostate cancer biomarkers: Are we hitting the mark?. Prostate Int 4: 130-135.   DOI
22 Singh P. 2013. Andropause: Current concepts. Indian J Endocrinol Metab 17: S621-S629.   DOI
23 Kim KM. 2013. Late-onset hypogonadism. Korean J Fam Pract 3: 245-254.
24 Araujo AB, Esche GR, Kupelian V, O'Donnell AB, Travison TG, Williams RE, Clark RV, McKinlay JB. 2007. Prevalence of symptomatic androgen deficiency in men. J Clin Endocrinol Metab 92: 4241-4247.   DOI
25 Buvat J, Maggi M, Gooren L, Guay AT, Kaufman J, Morgentaler A, Schulman C, Tan HM, Torres LO, Yassin A, Zitzmann M. 2010. Endocrine aspects of male sexual dysfunctions. J Sex Med 7: 1627-1656.   DOI
26 Basaria S. 2013. Reproductive aging in men. Endocrinol Metab Clin North Am 42: 255-270.   DOI
27 Cunningham GR. 2013. Andropause or male menopause? Rationale for testosterone replacement therapy in older men with low testosterone levels. Endocr Pract 19: 847-852.   DOI
28 Lamberts SW, van den Beld AW, van der Lely AJ. 1997. The endocrinology of aging. Science 278: 419-424.   DOI
29 Eisenberg ML. 2015. Testosterone replacement therapy and prostate cancer incidence. World J Mens Health 33: 125-129.   DOI
30 Wilt TJ, Dahm P. 2015. PSA screening for prostate cancer: Why saying no is a high-value health care choice. J Natl Compr Canc Netw 13: 1566-1574.   DOI
31 Corona G, Giagulli VA, Maseroli E, Vignozzi L, Aversa A, Zitzmann M, Saad F, Mannucci E, Maggi M. 2016. Testosterone supplementation and body composition: results from a meta-analysis of observational studies. J Endocrinol Invest 39: 967-981.   DOI
32 Gu M, Zhao P, Huang J, Zhao Y, Wang Y, Li Y, Li Y, Fan S, Ma YM, Tong Q, Yang L, Ji G, Huang C. 2016. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front Pharmacol 7: 345.
33 Yin HH, Cho BO, Fang CZ, Shim JS, Jang SI. 2015. Antiobesity effects of water extracts from different organs of Cirsium japonicum var. ussuriense. J Physiol & Pathol Korean Med 29: 322-329.   DOI
34 Kelly DM, Jones TH. 2015. Testosterone and obesity. Obes Rev 16: 581-606.   DOI
35 Taylor SR, Meadowcraft LM, Williamson B. 2015. Prevalence, pathophysiology, and management of androgen deficiency in men with metabolic syndrome, type 2 diabetes mellitus, or both. Pharmacotherapy 35: 780-792.   DOI
36 Lim SS, Lee JH. 1997. Effect of Artemisia princeps var orientalis and Circium japonicum var ussuriense on serum lipid of hyperlipidemic rat. Korean J Nutr 30: 12-18.
37 Dias JP, Melvin D, Simonsick EM, Carlson O, Shardell MD, Ferrucci L, Chia CW, Basaria S, Egan JM. 2016. Effects of aromatase inhibition vs. testosterone in older men with low testosterone: randomized-controlled trial. Andrology 4: 33-40.   DOI
38 Tenover JL. 1997. Testosterone and the aging male. J Androl 18: 103-106.
39 Han HK, Je HS, Kim GH. 2010. Effects of Cirsium japonicum powder on plasma glucose and lipid level in streptozotocin induced diabetic rats. Korean J Food Sci Technol 42: 343-349.
40 Noh YH, Kim DH, Lee SA, Yin XF, Park J, Lee MY, Lee WB, Lee SH, Kim JK, Kim SS, Jeong Y, Myung SC, Kim TJ, Kang IJ. 2016. The natural substance MS-10 improves and prevents menopausal symptoms, including colpoxerosis, in clinical research. J Med Food 19: 228-237.   DOI
41 Borst SE, Yarrow JF. 2015. Injection of testosterone may be safer and more effective than transdermal administration for combating loss of muscle and bone in older men. Am J Physiol Endocrinol Metab 308: E1035-1042.   DOI
42 Ishida H, Umino T, Tosugee T. 1987. Studies on antihemorrhagic substances in herbs classified as hemostatics in Chinese medicine. VII. On the antihemorrhagic principle in Cirsium japonicum DC.. Chem Pharm Bul 35: 861.   DOI
43 Swerdloff RS, Wang C, Bhasin S. 1992. Developments in the control of testicular function. Baillieres Clin Endocrinol Metab 6: 451-483.   DOI
44 Grech A, Breck J, Heidelbaugh J. 2014. Adverse effects of testosterone replacement therapy: an update on the evidence and controversy. Ther Adv Drug Saf 5: 190-200.   DOI
45 Morales A, Bain J, Ruijs A, Chapdelaine A, Tremblay RR. 1997. Clinical practice guidelines for screening and monitoring male patients receiving testosterone supplementation therapy. Int J Impot Res 8: 95-97.
46 Park JC, Hur JM, Park JG, Kim SC, Park JR, Choi SH, Choi JW. 2004. Effects of methanol extract of Cirsium japonicum var. ussuriense and its principle, hispidulin-7-O-neohesperidoside on hepatic alcohol-metabolizing enzymes and lipid peroxidation in ethanol-treated rats. Phytother Res 18: 19-24.   DOI
47 Hur HJ, Hwang JT. 2011. Effect of silybin on body weight and glucose tolerance in high-fat-diet induced obese mice. KSBB J 26: 78-82.   DOI
48 Liao Z, Chen X, Wu M. 2010. Antidiabetic effect of flavones from Cirsium japonicum DC in diabetic rats. Arch Pharm Res 33: 353-362.   DOI