Browse > Article
http://dx.doi.org/10.3746/jkfn.2016.45.10.1414

Comparison of Linarin Content and Biological Activity in Ethanol Extraction of Chrysanthemum zawadskii  

Kim, Yang-Ji (Nutraceutical Food R&D Center, KolmarBNH Co., Ltd.)
Kim, Seong-Eun (Nutraceutical Food R&D Center, KolmarBNH Co., Ltd.)
Lee, Hak Sung (Nutraceutical Food R&D Center, KolmarBNH Co., Ltd.)
Hong, Su-Young (Nutraceutical Food R&D Center, KolmarBNH Co., Ltd.)
Kim, Sung-Eun (Functional Foods Institute, KolmarBNH Co., Ltd.)
Kim, Young Jun (Department of Food and Biotechnology, Korea University)
Lee, Jin Hyup (Department of Food and Biotechnology, Korea University)
Park, Sung Jin (Department of Food and Biotechnology, Korea University)
Kim, Jun Ho (Department of Food and Biotechnology, Korea University)
Park, Youn-Je (Department of Food Science and Technology, Kongju National University)
Kim, Hyun-Kyu (Nutraceutical Food R&D Center, KolmarBNH Co., Ltd.)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.45, no.10, 2016 , pp. 1414-1421 More about this Journal
Abstract
This study was designed to determine optimal extraction conditions of Chrysanthemum zawadskii (CZ) with high yield of bioactive compounds (linarin, polyphenols, and flavonoids) and improved in vitro activities. Ethanol extracts were examined at different concentrations (0, 30, 50, 70, and 95%) and temperatures (50 and $70^{\circ}C$). The recommended extraction conditions were 50% ethanol at $70^{\circ}C$ for 4 h, which gave the highest yield of linarin, polyphenols, and flavonoids. This extract appeared to have the greatest ABTS and DPPH radical scavenging activities (87.81% and 51.42% at $500{\mu}g/mL$, respectively) and ${\alpha}$-glucosidase (74.59%) and pancreatic lipase inhibitory activities (90.44%). As contents of linarin increased, antioxidative activity, inhibitory effects of carbohydrates and lipid absorption of CZ extracts increased as well. From these results, CZ extracts can be used in functional food industries.
Keywords
Chrysanthemum zawadskii; linarin; ${\alpha}$-glucosidase; lipase; antioxidant;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Ramos A, Visozo A, Piloto J, García A, Rodríguez CA, Rivero R. 2003. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J Ethnopharmacol 87: 241-246.   DOI
2 Kwon OJ, Lee HY, Kim TH, Kim SG. 2014. Antioxidant and pancreatic lipase inhibitory activities of Anemarrhena asphodeloides. Korean J Food Preserv 21: 421-426.   DOI
3 Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L.. J Agric Food Chem 47: 3963-3966.   DOI
4 Chung HJ, Jeon IS. 2011. Antioxidative activities of methanol extracts from different parts of Chrysanthemum zawadskii. Korean J Food Preserv 18: 739-745.   DOI
5 Lee BB, Park SR, Han CS, Han DY, Park EJ, Park HR, Lee SC. 2008. Antioxidant activity and inhibition activity against ${\alpha}$-amylase and ${\alpha}$-glucosidase of Viola mandshurica extracts. J Korean Soc Food Sci Nutr 37: 405-409.   DOI
6 Kim HY, Lim SH, Park YH, Ham HJ, Lee KJ, Park DS, Kim KH, Kim S. 2011. Screening of ${\alpha}$-amylase, v-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. J Korean Soc Food Sci Nutr 40: 308-315.   DOI
7 Asano N. 2003. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13: 93-104.   DOI
8 Hadvay P, Lengsfeld H, Wolter H. 1988. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 256: 357-361.   DOI
9 Park JA, Jin KS, Kwon HJ, Kim BW. 2015. Antiobesity activity of Chrysanthemum zawadskii methanol extract. J Life Sci 25: 299-306.   DOI
10 Pi-Sunyer FX. 1991. Health implications of obesity. Am Soc Nutr 53: 15955-16035.
11 Chu MA, Choe BH. 2010. Obesity and metabolic syndrome among children and adolescents in Korea. J Korean Med Assoc 53: 142-152.   DOI
12 Westerterp-Plantenga MS, Smeets A, Lejeune MPG. 2005. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes 29: 682-688.   DOI
13 Mattes RD, Bormann L. 2000. Effects of (-)-hydroxycitric acid on appetitive variables. Physiol Behav 71: 87-94.   DOI
14 Jang DS, Park KH, Choi SW, Nam SH, Yang MS. 1997. Antibacterial substances of the flower of Chrysanthemum zawadskii Herbich var. latilobum Kitamura. Agric Chem Biotechnol 40: 85-88.
15 Kim DH, Lee EH, Hwang JC, Jeung JH, Kim DH, Cheong JY, Cho SW, Kim YB. 2002. A case of acute cholestatic hepatitis associated with orlistat. Korean J Hepatol 8: 317-320.
16 Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. 2009. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 102: 1703-1708.   DOI
17 Kim KK, Kang YH, Kim DJ, Kim TW, Choe M. 2013. Comparison of antioxidant, ${\alpha}$-glucosidase inhibition and anti- inflammatory activities of the leaf and root extracts of Smilax china L.. J Nutr Health 46: 315-323.   DOI
18 Woo JH, Lee CH. 2008. Effects of harvest date on antioxidant of Dendranthema zawadskii var. latilobum (Maxim.) Kitam and D. zawadskii var. yezoense (Maek) Y.M. Lee & H.J. Choi. Korean J Plant Res 21: 128-133.
19 Woo JH, Shin SL, Chang YD, Lee CH. 2010. Antioxidant effect according to extraction method in extracts of Dendranthema zawadskii var. yezoense and Cosmos bipinnatus. Korean J Hortic Sci Technol 28: 462-468.
20 Han J, Kim Y, Sung J, Um Y, Lee Y, Lee J. 2009. Suppressive effects of Chrysanthemum zawadskii var. latilobum flower extracts on nitric oxide production and inducible nitric oxide synthase expression. J Korean Soc Food Sci Nutr 38: 1685-1690.   DOI
21 Feng X, Wang X, Liu Y, Di X. 2015. Linarin inhibits the acetylcholinesterase activity in-vitro and ex-vivo. Iran J Pharm Res 14: 949-954.
22 Seo JY, Lim SS, Park J, Lim JS, Kim HJ, Kang HJ, Yoon Park JH, Kim JS. 2010. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity. Nutr Res Pract 4: 93-98.   DOI
23 Han S, Sung KH, Yim D, Lee S, Lee CK, Ha NJ, Kim K. 2002. The effect of linarin on LPS-induced cytokine production and nitric oxide inhibition in murine macrophages cell line RAW264.7. Arch Pharm Res 25: 170-177.   DOI
24 Li J, Hao L, Wu J, Zhang J, Su J. 2016. Linarin promotes osteogenic differentiation by activating the BMP-2/RUNX2 pathway via protein kinase A signaling. Int J Mol Med 37: 901-910.   DOI
25 Kim SJ, Cho HI, Kim SJ, Park JH, Kim JS, Kim YH, Lee SK, Kwak JH, Lee SM. 2014. Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure. Eur J Pharmacol 738: 66-73.   DOI
26 Lou H, Fan P, Perez RG, Lou H. 2011. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-${\beta}$-induced neuronal cell death. Bioorg Med Chem 19: 4021-4027.   DOI
27 Folin O, Denis W. 1915. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J Biol Chem 22: 305-308.
28 Eum MA, Kang YH, Kwon DJ, Jo KS. 1999. The nitrite scavenging and electron donating ability of potato extracts. Korean J Food Nutr 12: 478-483.
29 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237.   DOI