Browse > Article
http://dx.doi.org/10.3746/jkfn.2002.31.3.389

Production of Biosurfactant Using Bacillus spp  

Hur, Sung-Ho (동의공업대학 식품과학연구소)
Yang, Ji-Seok (유니푸드테크(주))
Hong, Jeong-Hwa (인제대학교 식품과학부)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.31, no.3, 2002 , pp. 389-393 More about this Journal
Abstract
Among the bacterial strains isolated from chungkook-jang, Bacillus subtilis CH-1, Bacills circulans K-1 and Bacillus subtitis (natto) N-1, Bacillus subtitis CH-1 showed the highest productivity of biosufactant. A-medium was selected for the basal medium in the large scale production of biosurfactant, and modified to synthetic medium which containing 2% glucose, 0.3% soy peptone, and mineral salts. The surface tension was reduced to maximal value after 96 hr after fermentation, about the 43% of initial tension. Temperature and initial pH of medium was not critical factor for the biosurfactant production. The yield of crude biosurfactant was 6 g/L under the optimum condition.
Keywords
biosurfactant; chungkook-jang; Bacillus subtilits CH-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pandey A, Selvakumar P, Soccol CR, Soccol VT, Krieger N, Fontana JD. 1999. Recent developments in microbial inulinases-its production, properties and industrial applications. Appl Biochem Biotechnol 81: 35-52   DOI   ScienceOn
2 Angelica B, Schmauder HP. 1999. Lipophilic compounds in biotecnology-interactions with cells and technological problems. J Biotechnol 67: 13-32   DOI   ScienceOn
3 Lim KH. 1996. Biosurfactants: their structures, properties, and applications. J Korean Oil Chemist's Soc 13: 1-20
4 Bognolo G. 1999. Biosurfactants as emulsifying agents for hydrocarbons. Colloids surfaces A: Physicochem Eng Aspects 152: 41-52   DOI   ScienceOn
5 Ohno A, Ano T, Shoda M. 1995. Effect of temperature on production of lipopeptide antibiotics Iturin A and surfactin by a dual producer, Bacillus subtillus RB14, in solidstate fermentation. J Fermentation Bioeng 80: 517-519   DOI   ScienceOn
6 Nakayama S, Takahashi S, Hirai M, Shoda M. 1997. Isolation of new variants of surfactin by a recombinant Bacillus subtillis. Appl Microbiol Biotechnol 48: 80-82   DOI
7 Razafindralambo H, Hbid MP, Destain PJJ, Thonart P. 1993. Purification of antifungal lipopeptidase by reversed-phase high-performance liquid chromatography. J Chromatography A 639: 81-85   DOI   ScienceOn
8 Thimon L, Peypox F, Wallach J, Michel G. 1993. Ionophorus and sequestering properties of surfactin, a biosurfactant from Bacillus subtillis. Colloids and Surface B: Biointerfaces 1: 57-62   DOI   ScienceOn
9 Kluge B, Vater J, Salnikow J, Eckart K. 1988. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtillis ATCC 21332. FEBS Letters 231: 107-110   DOI   ScienceOn
10 Malabarba A, Ciabatti R, Kettenring J. 1996. Structural modifications of the active site in teicoplanin and related glucopeptides. 1. Reductive hydrolysis of the 1,2 and 2,3 peptide bonds. J Organic Chemistry 61: 2137-2150   DOI   ScienceOn
11 Oren Z, Shai Y. 1997. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin : structure function study. Biochemistry 36: 1826-1835   DOI   ScienceOn
12 Fox SL, Bala GA. 2000. Production of surfactant from Bacillus subtillis ATCC 21332 using potato substrates. Bioresouce Technology 75: 235-241   DOI   ScienceOn
13 Jung HK, Lee JB, Yim GB, Kim EK. 1995. Properties of microbial surfactant S-acid. Korean J Biotechnol Bioeng 10: 71-77
14 Youn HK. 2000. Antimicrobial activity of viscous substance from chongkukjang fermented with different Bacillus spp. MS Thesis. Inje Univ
15 Champion JT, Gilkey JC, Lamparski H. 1995. Electron microscopy of rhamnolipid (biosurfactant) morphology-Effects of pH, cadmium, and octadecne, source. J Colloid & Interface Science 170: 569-574   DOI   ScienceOn
16 Kim SH, Lim EJ, Lee TH. 1998. Optimization of culture condition of Nocardia sp. L-417 strain for biosurfactant production. J Korean Soc Food Sci Nutr 27: 252-258
17 Lee MH. 1999. Antimicrobial activity of Korean leek (Allium tuberosum) and its application to food system. MS Thesis. Inje Univ