Browse > Article
http://dx.doi.org/10.13103/JFHS.2020.35.6.602

Characterization of Phage Behaviors Against Antibiotic-Resistant Salmonella Typhimurium  

Easwaran, Maheswaran (Department of Biomedical Science, Kangwon National University)
Ahn, Juhee (Department of Biomedical Science, Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.35, no.6, 2020 , pp. 602-606 More about this Journal
Abstract
This study was designed to investigate the dynamic behaviors of phages against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT), S. Typhimurium KCCM 40253 (STKCCM), ciprofloxacin-induced S. Typhimurium ATCC 19585 strains (STCIP), and S. Typhimurium CCARM 8009 (STCCARM). Phages, including PBST-10, PBST-13, PBST-32, PBST-35, P-22, and P-22 B1 had narrow host ranges. The adsorption rates of all phages ranged from 47 to 85%, 58 to 95%, and 61 to 93%, respectively, against STWT, STKCCM, and STCIP, while the lowest adsorption rates ranged from 14 to 36% against STCCARM. The phage burst sizes were from 43 to 350, 37 to 530, 66 to 500, and 24 to 500 plaque-forming units (PFUs) per infected STWT, STKCCM, STCIP, and STCCARM, respectively. The STCIP strain was effectively inhibited by all phages at the early of incubation period. These results provide useful information for better understanding the phage behaviors against antibiotic-resistant and antibiotic-sensitive pathogens.
Keywords
Antibiotic resistance; Salmonella; Phage adsorption; Burst size; Lytic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sommer, M.O.A., Munck, C., Toft-Kehler, R.V., Andersson, D.I., Prediction of antibiotic resistance: time for a new preclinical paradigm?. Nat. Rev. Microbiol., 15, 689 (2017).   DOI
2 Procaccianti, M., Motta, A., Giordani, S., Riscassi, S., Guidi, B., Ruffini, M., Maffini, V., Esposito, S., Dodi, I., First case of typhoid fever due to extensively drug-resistant Salmonella enterica serovar typhi in Italy. Pathogens (Basel, Switzerland), 9, 151 (2020).   DOI
3 Kim, J., Ahn, J., Characterization of clinically isolated antibiotic-resistant Salmonella Typhimurium exposed to subinhibitory concentrations of ceftriaxone and ciprofloxacin Microb. Drug Resist., 23, 949-957 (2017).   DOI
4 Peng, M., Salaheen, S., Buchanan, R.L., Biswas, D., Alterations of Salmonella enterica serovar Typhimurium antibiotic resistance under environmental pressure. Appl. Environ. Microbiol., 84, e01173-01118 (2018).
5 Romero-Calle, D., Guimaraes Benevides, R., Goes-Neto, A., Billington, C., Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics, 8, 138 (2019).   DOI
6 Chan, B.K., Abedon, S.T., Loc-Carrillo, C., Phage cocktails and the future of phage therapy. Future Microbiol., 8, 769-783 (2013).   DOI
7 Tawil, N., Sacher, E., Mandeville, R., Meunier, M., Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst, 139, 1224-1236 (2014).   DOI
8 Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik, G.I., Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J. Microbiol., 59, 145-155 (2010).   DOI
9 Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., Hu, F., Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One, 8, e68562 (2013).   DOI
10 Chaturongakul, S., Ounjai, P., Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol., 5, 442 (2014).
11 Michea-Hamzehpour, M., Kahr, A., Pechere, J.C., In vitro stepwise selection of resistance to quinolones, β-lactams and amikacin in nosocomial gram-negative bacilli. Infection, 22, S105-S110 (1994).   DOI
12 Goerke, C., Koller, J., Wolz, C., Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agent. Chemother., 50, 171-177 (2006).   DOI
13 Bielke, L., Higgins, S., Donoghue, A., Donoghue, D., Hargis, B.M., Salmonella host range of bacteriophages that infect multiple genera. Poult. Sci., 86, 2536-2540 (2007).   DOI
14 Jung, L.-s., Ding, T., and Ahn, J., Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium. Ann. Clin. Microbiol. Antimicrob., 16, 66 (2017).   DOI
15 Lu, Z., Breidt Jr, F., Fleming, H.P., Altermann, E., Klaenhammer, T.R., Isolation and characterization of a Lactobacillus plantarum bacteriophage, fJL-1, from a cucumber fermentation. Int. J. Food Microbiol., 84, 225-235 (2003).   DOI
16 Zhang, C., Li, W., Liu, W., Zou, L., Yan, C., Lu, K., Ren, H., T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol., 79, 5559-5565 (2013).   DOI
17 Ross, A., Ward, S., Hyman, P., More is better: Selecting for broad host range bacteriophages. Front. Microbiol., 7, 1352 (2016).
18 van den Beld, M.J.C., Reubsaet, F.A.G., Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis., 31, 899-904 (2012).   DOI
19 van Hoek, A.H.A.M., Mevius, D., Guerra, B., Mullany, P., Roberts, A.P., Aarts, H.J.M., Acquired antibiotic resistance genes: An overview. Front. Microbiol., 2, 203 (2011).   DOI
20 Kim, J., Jo, A., Ding, T., Lee, H.-Y., Ahn, J., Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Arch. Microbiol., 198, 521-529 (2016).   DOI
21 Easwaran, M., Paudel, S., De Zoysa, M., Shin, H.J., Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy. Mol. Cell Probes, 29, 151-157 (2015).   DOI
22 Muller-Merbach, M., Kohler, K., Hinrichs, J., Environmental factors for phage-induced fermentation problems: Replication and adsorption of the Lactococcus lactis phage P008 as influenced by temperature and pH. Food Microbiol., 24, 695-702 (2007).   DOI
23 Javed, M.A., Poshtiban, S., Arutyunov, D., Evoy, S., Szymanski, C.M., Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One, 8, e69770 (2013).   DOI
24 Hyman, P., Abedon, S.T., Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol., 70, 217-248 (2010).   DOI
25 Uddin, M.J., Ahn, J., Associations between antibiotic resistance and bacteriophage resistance phenotypes in laboratory and clinical strains of Salmonella enterica subsp. enterica serovar Typhimurium. Microb. Pathogen., 143, 104159 (2020).   DOI