Browse > Article
http://dx.doi.org/10.9721/KJFST.2020.52.6.678

Biochemical property identification of 10 strains of Bacillus thuringiensis and 10 strains of Bacillus cereus (7 strains of non-emetic and 3 strains of emetic type) by API test  

Hong, Yong-Gun (Department of Food Engineering, Dankook University)
Lee, Jin-Joo (Department of Food Engineering, Dankook University)
Kwon, Seung-Wook (Department of Food Engineering, Dankook University)
Kim, Sang-Soon (Department of Food Engineering, Dankook University)
Publication Information
Korean Journal of Food Science and Technology / v.52, no.6, 2020 , pp. 678-684 More about this Journal
Abstract
The objective of this study was to identify the fermentation characteristics of Bacillus thuringiensis and emetic, non-emetic Bacillus cereus using analytical profile index (API) test. Ten strains of B. thuringiensis and 10 strains of B. cereus including 3 strains of emetic type were used at the same concentrations. The differences of fermentation characteristics between the B. thuringiensis and B. cereus was not obvious, but the differences between the non-emetic and emetic B. cereus were distinctive. Seven among 50 substrates were negative for all non-emetic B. cereus strains and positive for all emetic strains, and three substrates among additional 12 substrates had the same tendency. From these differences, 3 emetic B. cereus strains were not indicated as B. cereus by API test. These results indicate that API test is not a suitable method to identify some strains of emetic B. cereus, and the distinctive differences in substrate utilization can be used to improve selective media.
Keywords
Bacillus cereus; Bacillus thuringiensis; API test; emetic; biochemical property;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Laohachai KN, Bahadi R, Hardo MB, Hardo PG, Kourie JI. The role of bacterial and non-bacterial toxins in the induction of changes in membrane transport: Implications for diarrhea. Toxicon 42: 687-707 (2003)   DOI
2 Lee WC, Sakai T, Lee MJ, Hamakawa M, Lee SM, Lee IM. An epidemiological study of food poisoning in Korea and Japan. Int. J. Food Microbiol. 29: 141-148 (1996)   DOI
3 Logan NA, Berkeley RCW. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130: 1871-1882 (1984)
4 Popoff MR, Poulain B. Bacterial toxins and the nervous system: Neurotoxins and multipotential toxins interacting with neuronal cells. Toxins 2: 683-737 (2010)   DOI
5 Ryu CB, Lee MS. Food poisoning. J. Korean. Med. Assoc. 54: 617-626 (2011)   DOI
6 Slamti L, Lereclus D. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. Embo J. 21: 4550-4559 (2002)   DOI
7 Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends. Food Sci. Tech. 93: 94-105 (2019)   DOI
8 Wu WJ, Rho YH, Ahn BY. Enterotoxin productivity and antimicrobial susceptibility of Bacillus cereus BY06 isolated from pigs with diarrheal disease. Kor. J. Food & Nutr. 27: 213-218 (2014)   DOI
9 Aruwa CE, Olatope SOA. Characterization of Bacillus species from convenience foods with conventional and API kit method: A comparative analysis. J. Appl. Life Sci. Int. 3: 42-48 (2015)   DOI
10 Bean NH, Griffin PM. Foodborne disease outbreaks in the United States, 1973-1987: Pathogens, Vehicles, and Trends. J. Food Protect. 53: 804-817 (1990)   DOI
11 Callahan C, Fox K, Fox A. The small acid soluble proteins (SASP α and SASP β) of Bacillus weihenstephanensis and Bacillus mycoides group 2 are the most distinct among the Bacillus cereus group. Mol. Cell. Probe. 23: 291-297 (2009)   DOI
12 Carpana E, Marocchi L, Gelmini L. Evalution of the API 50CHB system for the identification and biochemical characterization of Bacillus larvae. Apidologie 26: 11-16 (1995)   DOI
13 From C, Pukall R, Schumann P, Granum PE. Toxin-producing ability among Bacillus spp. Outside the Bacillus cereus group. Appl. Environ. Microb. 71: 1178-1183 (2005)   DOI
14 Chang YH, Shangkuan YH, Lin HC, Liu HW. PCR assay of the groEL gene for detection and differentiation of Bacillus cereus Group cells. Appl. Environ. Microb. 69: 4502-4510 (2003)   DOI
15 Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ. Synergism of Bacillus thuringiensis toxins by a fragment of a toxinbinding cadherin. P. Natl. Acad. Sci. USA. 104: 13901-13906 (2007)   DOI
16 Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487 (2004)   DOI
17 Goto K, Omura T, Hara Y, Sadaie Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J. Gen. Appl. Microbiol. 46: 1-8 (2000)   DOI
18 Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. Fems. Microbiol. Lett. 157: 223-228 (1997)   DOI
19 Iurlina MO, Saiz AI, Fuselli SR, Fritz R. Prevalence of Bacillus spp. in different food products collected in Argentina. Lwt-Food. Sci. Technol. 39: 105-110 (2006)   DOI
20 Hendriksen NB, Hansen BM. Diagnostic properties of three conventional selective plating media for selection of Bacillus cereus, B. thuringiensis and B. weihenstephanensis. Folia. Microbiol. 56: 535-539 (2011)   DOI
21 Kim HJ, Nam KJ, Lee DS, Paik HD. Distributions of microorganisms and identification of pathogenic Bacteria Isolated in raw beef of jangzorim. Korean J. Food Sci. Technol. 36: 683-687 (2004b)
22 Jeon JH, Park JH. Toxin Gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food sci. Technol. 42: 361-367 (2010)
23 Kang SH, Kim KJ, Kim WY, Chung SI. Usefulness of bacteriological tests and sspE PCR for identification of Bacillus cereus group. J. Bacteriol. Virol. 38: 61-75 (2008)   DOI
24 Kim SH, Kim MG., Kang MC, Son YW, Lee CH, Kim IB, Lee YJ, Choi SY. Isolation and growth pattern of Bacillus cereus from ready-to-eat foods. J. Life. Sci. 14: 664-669 (2004a)   DOI
25 Kim SK, Kim KP, Jang SS, Shin EM, Kim MJ, Oh SS, Ryu SY. Prevalence and toxigenic profiles of Bacillus cereus isolated from dried red peppers, rice, and sunsik in Korea. J. Food. Protect. 72: 578-582 (2009)   DOI
26 Kobayashi H, Kubota J, Fujihara K, Honjoh K, Iio M, Fujiki N, Nakabe M, Oda SI, Satoyama T, Takasu K, Nakanishi H, Miyamoto T. Simultaneous Enrichment of Salmonella spp , Escherichia coli O157:H7, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes by single broth and screening of the Pathogens by Multiplex Real-time PCR. Food sci. Technol. Res. 15: 427-438 (2009)   DOI
27 Korea Ministry of Government Legislation. Korean Food Sanitation Act, 2020. Available from: http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%8B%9D%ED%92%88%EC%9C%84%EC%83%9D%EB%B2%95. Accessed Aug. 20, 2020.
28 Ahn KJ, Lee TG. Production of microbial insecticide using Bacillus thuringiensis BT17 for the control of Lepidopteran larvae. Kor. J. Microbiol. 46: 389-396 (2010)