Browse > Article
http://dx.doi.org/10.9721/KJFST.2020.52.6.595

Structural elucidation of immuno-stimulating polysaccharide, galactomannan isolated from Colocasia esculenta  

Lee, Hee-Won (Department of Food Science and Biotechnology, Kyonggi University)
Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
Publication Information
Korean Journal of Food Science and Technology / v.52, no.6, 2020 , pp. 595-603 More about this Journal
Abstract
To elucidate the structure-function relationship of polysaccharides obtained from Colocasia esculenta, the immuno-stimulating polysaccharide, CE-4a was purified to homogeneity from the crude polysaccharide (CE) extracted from the corms of C. esculenta by two subsequent column chromatographies using DEAE-Sepharose FF and Sephadex G-100, and analysis of their immuno-stimulatory activities and structure were conducted. CE-4a showed an increase in anti-complementary activity in a dose-dependent fashion. The molecular mass was estimated to be 182.4 kDa, which mainly consisted of galactose (43.5%) and mannose (18.2%). Methylation analysis indicated that CE-4a comprised at least 10 different glycosyl linkages, such as terminal Galp, 3-linked Galp, and 4-linked Manp, as well as a characteristic linkage, 2,4,6-branched Manp residue. To analyze the fine structure of CE-4a, it was sequentially digested using endo-α-(1→4)-polygalacturonase, exo-α-galactosidase and endo-β-1,4-D-mannanase. These analyses suggested that CE-4a is to be a highly branched galactomannan with a (1→4)-mannan backbone and galactopyranosyl oligosaccharide side chains.
Keywords
Colocasia esculenta; taro; polysaccharide; galactomannan; structure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Pereira PR, Aguila EMD, Vericimo MA, Zingali RB, Paschoalin VMF, Silva JT. Purification and pharacterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo. Protein J. 33: 92-99 (2014)   DOI
2 Pereira PR, Winter HC, Vericimo MA, Meagher JL, Stuckey JA, Goldstein IJ, Paschoalin VMF, Silva JT Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochim. Biophys. Acta 1854: 20-30 (2015)   DOI
3 Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. Colocasia esculenta: a potent indigenous plant. Int. J. Nutr. Pharmacol. Neurol. Dis. 1: 90-96 (2011)   DOI
4 Yu Y, Shen M, Wang Z, Wang Y, Xie M, Xie J. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr. Polym. 174: 669-676 (2017)   DOI
5 Zhang L, Liu Y, Ke Y, Li Y, Luo X, Li C, Zhang Z, Liu A, Shen L, Chen H, Hu B, Wu H, Wu W, Lin D, Li S. Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocininduced diabetic mice. Int. J. Biol. Macromol. 119: 134-140 (2018)   DOI
6 Zhang J, Wen C, Duan Y, Zhang H, Ma H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 132: 906-914 (2019)   DOI
7 Prajapati VD, Jani G K, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC. Galactomannan: a versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 60: 83-92 (2013)   DOI
8 Shin KS. Roles of sugar chains in immunostimulatory activity of the polysaccharide isolated from Angelica gigas. Korean J. Food Sci. Technol. 51: 336-342 (2019)   DOI
9 Simsek S, El S.N. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chem. 168: 257-261 (2015)   DOI
10 Sweet DP, Shapiro RH, Albersheim P. Quantitativeanalysis by various g.l.c. response factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 40: 217-225 (1975)   DOI
11 Vaikundamoorthy R, Krishnamoorthy V, Vilwanathan R, Rajendran R. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii. Int. J. Biol. Macromol. 111: 1229-1237 (2018)   DOI
12 Xu X, Ya, H, Tang J, Chen J, Zhang X. Polysaccharides in Lentinus edodes: Isolation, structure, immunomodulating activity and future prospective. Crit. Rev. Food Sci. Nutr. 54: 474-487 (2014)   DOI
13 Yamada H, Ra KS, Kiyohara K, Cyong JC, Otsuka Y. Structural characterization of an anti-complementary pecticpolysaccharide from the roots of Bupleurum falcatum L. Carbohydr. Res. 189: 209-226 (1989)   DOI
14 Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 183: 91-101 (2018)   DOI
15 Hakomori S. A rapid permethylation of glycolipid andpolysaccharide catalyzed by methylsuphinyl carbanion indimethyl sulfoxide. J. Biochem (Tokyo) 55: 205-208 (1964)
16 Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamuraa J. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Anal. Biochem. 180: 351-357 (1989)   DOI
17 Ji X, Peng Q, Wang M. Anti-colon-cancer effects of polysaccharides: A mini-review of the mechanisms. Int. J. Biol. Macromol. 114: 1127-1133 (2018)   DOI
18 Kabat EA, Mayer MM. Experimental Immunochemistry. Thormas Publisher. Illinois. USA. pp. 133-240 (1971)
19 Kim CJ, Kim EK. Physicochemical properties and processing characteristics of taro and taro flour. Food Ind. Nutr. 3: 55-64 (1998)
20 Lee SJ, Rim HK, Jung JY, An HJ, Shin JS, Cho CW, Rhee YK, Hong HD, Lee KT. Immunostimulatory activity of polysaccharides from Cheonggukjang. Food Chem. Toxicol. 59: 476-484 (2013)   DOI
21 Choi JH, Shin KS. Structural analysis of anti-metastatic polysaccharides isolated from Opuntia humifusa. J Korean Soc Food Sci Nutr. 40: 214-222 (2011)   DOI
22 Di T, Chen G, Sun Y, Ou S, Zeng X, Ye H. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J. Funct. Foods. 28: 64-75 (2017)   DOI
23 Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., Coimbra, M. A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 132: 378-396 (2015).   DOI
24 Li CY, Meng L, Liu B, Bao JK. Galanthus nivalis agglutinin (GNA)-related lectins: traditional proteins, burgeoning drugs?. Curr. Chem. Biol. 3: 323-333 (2009)   DOI
25 Li H, Dong Z, Liu X, Chen H, Lai F, Zhang M. Structure characterization of two novel polysaccharides from Colocasia esculenta(taro) and a comparative study of their immunomodulatory activities. J. Funct. Foods. 42: 47-57 (2018)   DOI
26 McCleary BV, Matheson NK. Enzymatic analysis of polysaccharide structure. Adv Carbohydrate Chem Biochem. 44: 147-276 (1987)   DOI
27 Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 424: 30-41 (2016)   DOI
28 Aspinall GO. Chemical characterization and structure determination of polysaccharides. Vol.1, pp 35-45. In: The Polysaccharides. Aspinall GO (ed). Academic Press, New York, USA (1982)
29 Cho CW, Han CJ, Rhee YK, Lee YC, Shin KS, Shin JS, Lee KT, Hong HD. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression. Int. J. Biol. Macromol. 72: 519-525 (2015)   DOI
30 Moon JH, Sung JH, Choi IW, Kim YS. Anti-Obesity and hypolipidemic activity of taro powder in mice fed with high fat and cholesterol diets. Korean J. Food Sci. Technol. 42: 620-626 (2010)
31 Park HR, Lee HS, Cho SY, Kim YS, Shin KS. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int. J. Mol. Med. 31: 361-368 (2013)   DOI