Browse > Article
http://dx.doi.org/10.9721/KJFST.2018.50.5.543

Antioxidant and neuroprotective effects of crude polysaccharide fractions from Cudrania tricuspidata fruits  

Kim, Yi-Eun (Department of Food Science and Technology, Kongju National University)
Cho, Eun-Ji (Department of Food Science and Technology, Kongju National University)
Byun, Eui-Hong (Department of Food Science and Technology, Kongju National University)
Publication Information
Korean Journal of Food Science and Technology / v.50, no.5, 2018 , pp. 543-548 More about this Journal
Abstract
The current study examined antioxidant and neuronal cell protective effects of the crude polysaccharide fraction in Cudrania tricuspidata fruits (CTP). The radical scavenging activities of (1,1-diphenyl-picrylhydrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) and reducing power and FRAP of CTP were increased dose-dependently. In addition, the expression of neuroprotective effect of CTP was tested in HT22 mouse hippocampal cells. CTP treatment exhibited non cytotoxicity at dose levels below $500{\mu}g/mL$. Within this optimal concentration range, CTP treatment significantly increased cell viability in $H_2O_2-treated$ HT22 cells. Furthermore, CTP treatment increased superoxide dismutase (SOD) activity and decreased malonaldehyde (MDA) levels in HT22 cells. Therefore, these results indicate that the crude polysaccharide fraction from Cudrania tricuspidata fruits (CTP) possesses antioxidant activities and displays therapeutic potential as a useful source material in the development of brain disorder treatments targeting oxidative stress in neuronal cells.
Keywords
Cudrania tricuspidata fruits; polysaccharide; neuroprotective effects; antioxidant; neuronal cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim YC, Hur JDH, Sohn DH, Kim, HS. Antibacterial compounds of the root Barks of Cudrania tricuspidata. Kor. J. Pharmacogn. 39: 246-248 (2008)
2 Kim SH, Kim NJ, Choi JS, Park JC. Determination of flavonoid by HPLC and biological activities from the leaves of Cudrania tricuspidata Bureau. J. Korean Soc, Food Sci. Nutr. 22: 68-72 (1993)
3 Kim HK, Kim YE, Do JR, Lee YC, Lee BY. Antioxidative activity and physiological activity of some Korean medicinal plants. Korean J. Food Sci. Technol. 27: 80-85 (1995)
4 Kim SJ, Lee KT, Youe WJ, Lee SS, Kim YS. Structure Analysis of Water-soluble Polysaccharides Extracted from The unripe fruit of Cudrania tricuspidata. J. Korean Wood Sci. Technol. 42: 740-746 (2014)   DOI
5 Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeon BT. Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-BHP induced oxidative stress in Chang cells. J. Korean Soc. Food Sci. Nutr. 40: 1525-1531 (2011)   DOI
6 Kim YS, Park KM, Shin HJ, Song KS, Nam KY, Park JD. Anticancer activities of red ginseng acidic polysaccharide by activation of macrophages and natural killer cells. Yakhak. Hoeji. 46: 113-119 (2002)
7 Kwon DH, Kim MB, Yoon DY, Lee YH, Kim JW, Lee HG, Cha IS, Lim JS, Choe YK. Screening of plant resources of anti-viral activity. Korean J. Medicinal Crop Sci. 11: 24-30 (2003)
8 Lee YN. New Flora of Korea, I. Kyo-Hak Publishing Co. Ltd. 246-247 (2006)
9 Lee BW, Kang NS, Park KH. Isolation of antibacterial prenylated flavonoids from Cudrania tricuspidata. J. Korean Soc. Appl. Biol. Chem. 47: 270-273 (2004)
10 Lee KB, Song KS, Moon EH, Lee JL, Yoo YC. Adjuvant activity of Cudrania tricuspidata water extracts to enhance antigen specific humoral and cellular immune. J. Korean Soc. Appl. Biol. Chem. 52: 234-240 (2009)   DOI
11 Bermejo P, Gomez-Serranillos P, Santos J, Pastor E, Gil P, Martin-Aragon S. Determination of malonaldehyde in Alzheimer's disease: a comparative study of high-performance liquid chromatography and thiobarbituric acid test. Gerontology 43: 218-222 (1997)   DOI
12 Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 239: 70-76 (1996)   DOI
13 Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200 (1958)   DOI
14 Cho IY, Sheen YY. Effect of dioxin on the change of mitochondrial inner membrane potential and the induction of ROS. J. Environ. Toxicol. 24: 33-41 (2009)   DOI
15 Choi HJ, Kim CT, Do MY, Rang MJ. Physiological activities of Cudrania tricuspidata extracts (Part I). J. Korea Acad. Industr. Coop. Soc. 14: 3907-3915 (2013)   DOI
16 Heo J. Translation Dongui Bogam. Bub In Culture Co. Seoul, Korea. pp. 1539-1615 (1999)
17 Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin. Chim. Acta. 305: 75-80 (2001)   DOI
18 Kandaswami C, Middleton E. Free radical scavenging and antioxidant activity of plant flavonoids. pp. 351-376. In: Free Radicals in Diagnostic Medicine. Armstrong D (ed). Springer Publishing, Manhattan, NY, USA (1994)
19 Kim OK, Ho JH, Nam DE, Jun WJ, Hwang KT, Kang JE, Chae OS, Lee JM. Hepatoprotective effect of Curdrania tricuspidata extracts against oxidative damage. J. Korean Soc. Food Sci. Nutr. 41: 7-13 (2012)   DOI
20 Kang MJ, Shin SR, Kim KS. Antioxdative and free radical scavenging activity of water extract from dandelion (Taraxacum officinale). Korean J. Food Preser. 9: 253-259 (2002)
21 Ames BN, Shigenaga MK, Hagen TM. Oxidant, antioxidants, and the degenerative disease of aging. Proc. Natl. Acad. Sci. 90: 7915-7922 (1993)   DOI
22 Yoo KM, Kim DO, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177-182 (2007)
23 Anzai K, Ogawa K, Goto Y, Senzaki Y, Ozawa T, Yamamoto H. Oxidation-dependent changes in the stability and permeability of lipid bilayers. Antioxid Redox Signal. 1: 339-347 (1999)   DOI
24 Aoshima H, Tsunoue H, Koda H, Kiso Y. Aging of whisky increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agr. Food Chem. 52: 5240-5244 (2004)   DOI
25 Zheng ZP, Tan HY, Chen J, Wang MF. Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure-activity relationship study. Fitoterapia. 84: 242-247 (2013)   DOI
26 Schepetkin IA, Quinn MT. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333 (2006)   DOI
27 Sim SM, Im GH, Kim JW, Lee UY, Kim HW, Lee MU, Lee TS. The immuno-modulatory and antitumor effects of crude polysaccharides extracted from Daedaleopsis tricolor. Kor. J. Mycol. 31: 161-167 (2003)   DOI
28 Sung NY, Song HY, Ahn DH, Yoo YC, Byun EB, Jang BS, Park CW, Park WJ, Byun EH. Antioxidant and neuroprotective effects of green tea seed shell ethanol extracts. J. Korean Soc. Food Sci. Nutr. 45: 958-965 (2016)   DOI
29 Wang X, Wang J, Zhang J, Zhao B, Yao J, Wang Y. Structure-antioxidant relationships of sulfated galactomannan from guar gum. Int. J. Biol. Macromol. 46: 59-66 (2010)   DOI
30 Yoon MY, Lee BB, Kim JY, Kim YS, Park EJ, Lee SC, park HR. Antioxidant activity and neuroprotective effect of Psoralea corylifolia linne extract. Korean J. Pharmacogn. 38: 84-89 (2007)
31 Yu G, Yufeng D, Guozhen F, Yan Z, Shuo W. Polysaccharides from fruit calyx of Physalis alkekengi var. francheti: Isolation, purification, structural features and antioxidant activities. Carbohydr. Polym. 77: 188-193 (2009)   DOI
32 Yuan JF, Zhang ZQ, Fan ZC, Yang JX. Antioxidant effects and cytotoxicity of three purified polysaccharides from Ligusticum chuanxiong Hort. Carbohydr. Polym. 74: 822-827 (2008)   DOI
33 Zemlan FP, Thienhaus OJ, Bosmann HB. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res. 476: 160-162 (1989)   DOI
34 Zhao B. Natural antioxidants protect neurons in alzheimer's disease and parkinson's disease. Neurochem. Res. 24: 630-638 (2009)
35 Park JC, Young HS, Choi JS. Constituents of Cudrania tricuspidata in Korea. Yakhak. Hoeji 36: 40-45 (1992)
36 Liu LN1, Mei QB, Liu L, Zhang F, Liu ZG, Wang ZP, Wang RT. Wang, RT. Wang. Protective effects of Rheum tanguticum polysaccharide against hydrogen peroxide-induced intestinal epithelial cell injury. World J. Gastroenterol. 11: 1503-1507 (2005)   DOI
37 Matkowski A, Tasarz P, Szypula E. Antioxidant activity of herb extracts from five medicinal plants from Lamiaceae, subfamily Lamioideae. J. Med. Plants Res. 11: 321-330 (2008)
38 Morrow JD, Awad JA, Kato T, Takahashi K, Badr KF, Roberts LJ, Burk RF. Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J. Clin. Invest. 90: 2502-2507 (1992)   DOI
39 Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986)   DOI
40 Packer, L. Oxygen radicals in biological systems. Part C. Vol. 233, pp. 15-35. In: Methods in Enzymology. Academic press, San Diego, CA, USA (1994)
41 Rao KS. Free radical induced oxidative damage to DNA: Relation to brain aging and neurological disorders. Indian J. Biochem. Biophys. 46: 9-15 (2009)
42 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999)   DOI
43 Lee KW, Sung KS, Kim SS, Lee OH, Lee BH, Han CK. Effects of Cucurbita moschata, adlay seed and Cudrania tricuspidata leaf mixed-powder diet supplements on the visceral fat, fecal amount and serum lipid levels of the rats on a high-fat diet. Korean J. Food Nutr. 25: 990-998 (2012)   DOI