Browse > Article
http://dx.doi.org/10.9721/KJFST.2016.48.6.560

Antimicrobial activities of actinonin against Bacillus cereus  

Jung, Dongyun (Department of Food Science and Technology, Chungnam National University)
Yum, Su-Jin (Department of Food Science and Technology, Chungnam National University)
Yu, Yeon-Cheol (Department of Food Science and Technology, Chungnam National University)
Kim, Jong-Heon (Department of Food Science and Technology, Chungnam National University)
Lee, Byung-Hwi (Department of Food Science and Technology, Chungnam National University)
Jang, Hoon-Nyung (Department of Food Science and Technology, Chungnam National University)
Jeong, Hee Gon (Department of Food Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Food Science and Technology / v.48, no.6, 2016 , pp. 560-564 More about this Journal
Abstract
The objective of this study was to investigate the anti-Bacillus cereus activity of actinonin. Actinonin inhibited the growth of B. cereus in a dose dependent manner. The growth-inhibitory activity of actinonin was evaluated using a broth micro-dilution method, and minimum inhibitory concentration (MIC) and agar disk diffusion tests. B. cereus showed high susceptibility to actinonin in a concentration-dependent manner and MIC was determined to be $0.192{\mu}g/mL$. Additionally, 1 and 2 mM actinonin induced formation of B. cereus inhibition zones. In addition, as compared to B. cereus alone, B. cereus added with $10{\mu}M$ actinonin showed a lower level of cytotoxicity in HeLa cells in vitro. Thus, this study revealed that actinonin could be a potential source of a natural antimicrobial agent or a pharmaceutical component against B. cereus.
Keywords
Actinonin; Bacillus cereus; antimicrobial agent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cho KH, Park SG. Antibacterial effects on Bacillus stearothermophilus by adding natural grapefruit seed extracts in soymilk. J. Korean Ind. Eng. Chem. 16: 139-143 (2004)
2 Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan Z. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39: 1256-1262 (2000)   DOI
3 Lee MD, She YH, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, Sirotnak FM, Scheinberg DA. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J. Clin. Invest. 114: 1107-1116 (2004)   DOI
4 Yekkour A, Meklat A, Bijani C, Toumatia O, Errakhi R, Lebrihi A, Mathieu F, Zitouni A, Sabaou N. A novel hydroxamic acidcontaining antibiotic produced by a Saharan soil-living Streptomyces strain. Lett. Appl. Microbiol. 60: 589-596 (2015)   DOI
5 Pratt LM, Beckett RP, Davies SJ, Launchbury SB, Miller A, Spavold ZM, Todd RS, Whittaker M. Asymmetric synthesis of BB-3497-A potent peptide deformylase inhibitor. Bioorg. Med. Chem. Lett. 11: 2585-2588 (2001)   DOI
6 Bashiardes G, Bodwell GJ, Davies SG. Asymmetric-synthesis of (-)-actinonin and (-)-epi-actinonin. J. Chem. Soc. Perkin Trans. 1: 459-469 (1993)
7 Sayama K, Goto Y, Iguchi T, Takeda Y, Matsuzawa A. Effects of an antibiotic protease inhibitor, actinonin on the growth within collagen gels of non-metastatic and metastatic mouse mammary tumors of the same origin. Cancer Lett. 94: 171-177 (1995)   DOI
8 Adams JM, Capecchi MR. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc. Natl. Acad. Sci. 55: 147-55 (1966)   DOI
9 Mazel D, Pochet S, Marliere P. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J. 13: 914-23 (1994)
10 Margolis PS, Hackbarth CJ, Young DC, Wang W, Chen D, Yuan Z, White R, Trias J. Peptide deformylase in Staphylococcus aureus: Resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Ch. 44: 1825-31 (2000)   DOI
11 Oh MH, Ham JS, Cox JM. Diversity and toxigenicity among members of the Bacillus cereus group. Int J. Food Microbiol. 152: 1-8 (2012)   DOI
12 Agata N, Ohta M, Mori M, Isobe M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129: 17-20 (1995)
13 Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487 (2004)   DOI
14 Kim JJ, In YW, Oh SW. Antimicrobial activity of citral against Salmonella Typhimurium and Staphylococcus aureus. Korean J. Food Sci. Technol. 43: 791-794 (2011)   DOI
15 Brudzynski K, Abubaker K, Wang T. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide. Front. Microbiol. 3: 242 (2012)
16 Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Forth Informational Supplement. CLSI document M100-S24, Wayne, PA, USA. (2014)
17 Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med. 11: 29 (2011)   DOI
18 Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 26: 1533-1538 (2010)   DOI
19 Gutierrez-Larrainzar M, Rua J, Caro I, de Castro C, de Arriaga D, Garcia-Armesto MR, del Valle P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control. 26: 555-563 (2012)   DOI
20 Park KS, Ono T, Rokuda M, Jang MH, Okada K, Idia T, Honda T. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665 (2004)   DOI
21 Walsh C, Fanning S. Antimicrobial resistance in foodborne pathogens-A cause for concern?. Curr. Drug Targets 9: 808-815 (2008)   DOI
22 Granum PE. Bacillus cereus and its toxins. Soc. Appl. Bacteriol. Symp. Ser. 23: 61S-66S (1994)
23 Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg. Microbes. Infect. 4: 10.1038/emi.2015.1 (2015)   DOI
24 Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010)   DOI
25 Ricke SC, Kundinger MM, Miller DR, Keeton JT. Alternatives to antibiotics: Chemical and physical antimicrobial interventions and foodborne pathogen response. Poult. Sci. 84: 667-675 (2005)   DOI
26 Unemo M, Del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: A major global public health problem in the 21st century. Microbiol. Spectr. 4: 10.1128/microbiolspec.EI10-0009-2015 (2016)   DOI