Browse > Article
http://dx.doi.org/10.9721/KJFST.2016.48.4.392

Anti-inflammatory effect of zaluzanin C on lipopolysaccharide-stimulated murine macrophages  

Kang, Ye Rim (Department of Food and Nutrition, College of Engineering, Daegu University)
Lee, Hee Won (Department of Food and Nutrition, College of Engineering, Daegu University)
Kim, Yoon Hee (Department of Food and Nutrition, College of Engineering, Daegu University)
Publication Information
Korean Journal of Food Science and Technology / v.48, no.4, 2016 , pp. 392-397 More about this Journal
Abstract
Zaluzanin C is a sesquiterpene lactone isolated from Ainsliaea acerifolia, a Korean medicinal plant. In the present study, the anti-inflammatory effects of zaluzanin C were demonstrated in lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells). Zaluzanin C inhibited the release of nitric oxide (NO) by alleviating the protein expression of inducible NO synthase in LPS-treated RAW264.7 cells. Furthermore, it suppressed the release of interleukin-6 induced by LPS. Zaluzanin C was also found to block the translocation of the p65 subunit of nuclear factor-kB from the cytosol to the nucleus, which is one of the underlying mechanisms of the anti-inflammatory action of zaluzanin C. These data suggest the potential of zaluzanin C in the treatment of inflammatory diseases.
Keywords
zaluzanin C; Ainsliaea acerifolia; macrophage; nitric oxide; interleukin-6;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Vahora H, Khan MA, Alalami U, Hussain A. The potential role of nitric oxide in halting cancer progression through chemoprevention. J. Cancer Prev. 21: 1-12 (2016)   DOI
2 Iwakiri Y. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin. Mol. Hepatol. 21: 319-325 (2015)   DOI
3 Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Pro-inflammatory properties of cadmium. Acta. Biochim. Pol. 59: 475-482 (2012)
4 Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, Luo DZ, Mo WG, Kawanishi S. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: The relation to STAT3 activation and EGFR expression. Int. J. Cancer 122: 2517-2525 (2008)   DOI
5 Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappaB functions as a tumor promoter in inflammation-associated cancer. Nature 431: 461-466 (2004)   DOI
6 Bannon A, Zhang SD, Schock BC, Ennis M. Cystic fibrosis from laboratory to bedside: The role of A20 in NF-${\kappa}B$-mediated inflammation. Med. Princ. Pract. 24: 301-310 (2015)   DOI
7 Pamukcu B, Lip GY, Shantsila E. The nuclear factor-kappa B pathway in atherosclerosis: A potential therapeutic target for atherothrombotic vascular disease. Thromb. Res. 128: 117-123 (2011)   DOI
8 Neumann M, Naumann M. Beyond IkappaBs: Alternative regulation of NF-kappaB activity. FASEB J. 21: 2642-2654 (2007)   DOI
9 Tokunaga F. Linear ubiquitination-mediated NF-${\kappa}B$ regulation and its related disorders. J. Biochem. 154: 313-323 (2013)   DOI
10 Maine GN, Mao X, Komarck CM, Burstein E. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullincontaining ubiquitin ligase. EMBO J. 26: 436-447 (2007)   DOI
11 Das UN. Molecular basis of health and disease. Springer publishing, NewYork, USA. pp. 15-16. (2011)
12 Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860-867 (2002)   DOI
13 Murata M, Thanan R, Ma N, Kawanishi S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol. 623019 (2012)
14 Baltimore D. Discovering NF-kappaB. Cold Spring Harb. Perspect. Biol. 1: a000026 (2009)
15 Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 132: 344-362 (2008)   DOI
16 Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb. Perspect. Biol. 2: a000109 (2010)
17 Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kB as the matchmaker. Nat. Immunol. 12: 715-723 (2011)   DOI
18 Choi SZ, Yang MS, Choi SU, Lee KR. Cytotoxic terpenes and lignans from the roots of Ainsliaea acerifolia. Arch. Pharm. Res. 29: 203-208 (2006)   DOI
19 Brasier AR. The NF-kappaB regulatory network. Cardiovasc. Toxicol. 6: 111-130 (2006)   DOI
20 Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46: 4769-4807 (2011)   DOI
21 Jung CM, Kwon HC, Choi SZ, Lee JH, Lee DJ, Ryu SN, Lee KR. Phytochemical constituents of Ainsliaea acerifolia. Korean J. Pharmacogn. 31: 125-129 (2000)
22 Lee EW, Kim TW, Kim HS, Park YM, Kim SH, Im MH, Kwak JH, Kim TH. Antioxidant and a-glucosidase inhibitory effects of ethanolic extract of Ainsliaea acerifolia and organic solvent-soluble fractions. Korean J. Food Preserv. 22: 275-280 (2015)   DOI
23 Moon HI, Ji OP, Shin MS. Effects of compounds isolated from Ainsliaea acerifolia on the hepatic alcohol dehydrogenase activity. J. Appl. Biol. Chem. 42: 162-165 (1999)
24 Moon HI, Ji OP, Moon SH, Shin MS. Effect of Ainsliaea acerifolia fraction extract on alcohol dehydrogenase activity. J. Appl. Biol. Chem. 41: 447-450 (1998)
25 Shin SG, Kang JK, Lee KR, Lee HW, Han JW, Choi WS. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones. J. Toxicol. Environ. Health A. 68: 2119-2131 (2005)   DOI
26 Ando M, Kusaka H, Ohara H, Takase K, Yamaoka H, Yanagi Y. Studies on the syntheses of sesquiterpene lactones. 11. The syntheses of 3-epizaluzanin C zaluzanin C, zaluzanin D, and related compounds 3a-hydroxyguaia-1(10),4 (15),11(13)-trieno-12,6a-lactone and 3a-hydroxyguaia-4(15),9,11(13)-trieno-12, 6a-lactone. J. Org. Chem. 54: 1952-1960 (1989)   DOI