Browse > Article
http://dx.doi.org/10.9721/KJFST.2016.48.2.153

Chitosan Nanoparticle System for Improving Blood Circulation  

Lee, Ji-Soo (Department of Food and Nutrition, Hanyang University)
Yoon, Hyun-Sook (Department of Food and Nutrition, Hanyang University)
Kim, Eun Suh (Department of Food and Nutrition, Hanyang University)
Nam, Hee Sop (Research & Development Center, Dongwon F&B)
Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University)
Publication Information
Korean Journal of Food Science and Technology / v.48, no.2, 2016 , pp. 153-158 More about this Journal
Abstract
The principal objective of this study was to produce a chitosan nanoparticle (NP) system for improving blood circulation. Chitosan NPs were prepared using fucoidan and $poly-{\gamma}-glutamic$ acid (PGA), denoted as CS/Fu and CS/Fu/PGA NPs, respectively. As the chitosan concentration was increased, the activated partial thromboplastin time (APTT) of the NPs significantly increased (p<0.05). When the concentration of fucoidan and ${\gamma}-PGA$ was 5-20 and $1-10{\mu}g/mL$, respectively, the size of the CS/Fu and CS/Fu/PGA NPs was approximately 200 and 100 nm, respectively. With an increase in the fucoidan and PGA concentration, the APTT of CS/Fu and CS/Fu/PGA NPs significantly increased (p<0.05). These results suggest that CS/Fu and CS/Fu/PGA NPs could be used as a potent NP system for improving blood circulation.
Keywords
blood circulation; activated partial thromboplastin time; nanoparticle; chitosan;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim YD, Bae ON, Chung SM, Chung JH. Improvement of haemostasis mediated by anti-platelet activities by plant vinegar. J. Toxicol. Pubulic Health 20: 137-142 (2004)
2 Chung HK, Shin MJ, Cha YJ, Lee KH. Effect of onion peel extracts on blood lipid profile and blood coagulation in high fat fed SD rats. Korean J. Food Nutr. 24: 442-450 (2011)   DOI
3 Noh KH, Park CM, Jang JH, Shin JH, Cho MK, Kim JO, Song YS. Effects of nattokinase fibrinol supplementation on fibrinolysis and atherogenesis. J. Life Sci. 19: 289-298 (2009)   DOI
4 Akahane N, Ohba S, Suzuki J, Wakabayashi T, Nakahara T, Yanagi K, Ohsiima N. Antithrombotic activity of a symmetrical triglyceride with eicosapentaenoic acid and ${\gamma}$-linolenic acid in guinea pig mesenteric microvasculature. Thromb. Res. 78: 441-450 (1995)   DOI
5 Akiba S, Kawauchi T, Oka T, Hashizume T, Sato T. Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stressinduced platelet aggregation. Biochem. Mol. Biol. Life Sci. 46: 1243-1248 (1998)
6 Choi IS, Jin BH. Effects of sardine oil on plasma lipids, fatty acid composition of erythrocyte membrane phospholipids and lipid peroxide levels of plasma and liver in rats. Korean J. Nutr. 20: 330-340 (1987)
7 Lee HA, Yoo IJ, Lee BH. Research and development trends on omega-3 fatty acid fortified foodstuffs. J. Korean Soc. Food Nutr. 26: 161-174 (1997)
8 Yu JY, Jin YR, Lee JJ, Chung JH, Noh JY, You SH, Kim KN, Im JH, Lee JH, Seo JM, Han HJ, Lim Y, Park ES, Kim TJ, Shin KS, Wee JJ, Park JD, Yun YP. Antiplatelet and antithrombotic activities of Korean red ginseng. Arch. Pharm. Res. 29: 898-903 (2006)   DOI
9 Tan CP, Nakajima M. ${\beta}$-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 92: 661-671 (2005)   DOI
10 Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50: 47-60 (2000)   DOI
11 Cho, YH, Shin, DS, Park J. A study on wall materials for flavor encapsulation. Korean J. Food Sci. Tech. 31: 1563-1569 (1999)
12 Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 11: 833-844 (2008)   DOI
13 Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Tech. 23: 13-27 (2012)   DOI
14 Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 1: 1806-1815 (2011)   DOI
15 Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 36: 502-510 (2009)   DOI
16 Rashidi L, Khosravi-Darani K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. 51: 723-730 (2011)   DOI
17 Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50: 213-224 (1999)   DOI
18 Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloid. Surface. B. 76: 292-297 (2010)   DOI
19 Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Delivery Rev. 60: 1650-1662 (2008)   DOI
20 Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274: 1-33 (2004)   DOI
21 Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Nah JW. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319: 130-138 (2006)   DOI
22 Sajomsang W, Gonil P, Ruktanonchai UR, Petchsangsai M, Opanasopit P, Puttipipatkhachorn S. Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery. Carbohyd. Polym. 91: 508-517 (2013)   DOI
23 Chou TC, Fu E, Wu CJ, Yeh JH. Chitosan enhances platelet adhesion and aggregation. Biochem. Bioph. Res. Co. 302: 480-483 (2003)   DOI
24 Periayah MH, Halim AS, Hussein AR, Saad AZM, Rashid AHA, Noorsal K. In vitro capacity of different grades of chitosan derivatives to induce platelet adhesion and aggregation. Int. J. Biol. Macromol. 52: 244-249 (2013)   DOI
25 Stoltz JF, Nicolas A. Analytical study of ionized or ionizable groups of platelet membrane. Blut. 38: 103-117 (1979)   DOI
26 Hajdu I, Bodnár M, Filipcsei G, Hartmann JF, Daróczi L, Zrínyi M, Borbély J. Nanoparticles prepared by self-assembly of chitosan and poly-${\gamma}$-glutamic acid. Colloid Polym. Sci. 286: 343-350 (2008)   DOI
27 Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 13: 1671-1695 (2008)   DOI
28 Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, Hsu CW, Lin KJ, Sung HW. Enteric-coated capsules filled with freeze-dried chitosan/poly (${\gamma}$-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 31: 3384-3394 (2010)   DOI
29 Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW. Heparinized chitosan/poly (${\gamma}$-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31: 9320-9332 (2010)   DOI
30 Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohyd. Res. 337: 719-730 (2002)   DOI
31 Cumashi A, Ushakova NA, Preobrazhenskaya ME, D'Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541-552 (2007)   DOI
32 Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohyd. Res. 186: 119-129 (1989)   DOI
33 Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 73: 255-267 (2001)   DOI
34 Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 145: 1310-1312 (1964)   DOI
35 Son DJ, Cho MR, Jin YR, Kim SY, Park YH, Lee SH, Akiba S, Sato T, Yun YP. Antiplatelet effect of green tea catechins: A possible mechanism through arachidonic acid pathway. Prostag. Leukotr. Ess. 71: 25-31 (2004)   DOI
36 Li C, Mao X, Xu B. Pulsed electric field extraction enhanced anti-coagulant effect of fungal polysaccharide from Jew's Ear (Auricularia auricula). Phytochem. Analysis 24: 36-40 (2013)   DOI