Browse > Article
http://dx.doi.org/10.9721/KJFST.2016.48.2.128

Development of a Rapid Foodborne-pathogen-detection Method Involving Whole-genome Amplification  

Seong, Ji-Yeong (Department of Food and Nutrition, Kookmin University)
Ko, Young-Jun (R&D Management Team, SolGent Co., Ltd.)
Myeong, Hyeon-Koon (R&D Management Team, SolGent Co., Ltd.)
Oh, Se-Wook (Department of Food and Nutrition, Kookmin University)
Publication Information
Korean Journal of Food Science and Technology / v.48, no.2, 2016 , pp. 128-132 More about this Journal
Abstract
In this study, polyethylene glycol (PEG) was used to improve DNA amplification efficiency during whole genome amplification (WGA). Amplification efficiency was determined by adding PEG with different molecular weights to the WGA reaction. The greatest increase in amplification efficiency was obtained with PEG 4,000 used at 1.5% concentration. Foodborne pathogenic DNA was amplified by WGA and quantitatively analyzed by real-time polymerase chain reaction. DNA of Salmonella serotype Typhimurium, Listeria monocytogenes, and Vibrio parahaemolyticus was amplified 7,777.01, 9,981.22, and 1,239.03 fold, respectively, by WGA. On adding PEG in the WGA reaction (i.e., enhanced WGA [eWGA]), 18-40-fold more DNA amplification was achieved. Thus, these analyses showed that foodborne pathogens, which are usually present at very low concentration in foods, can be detected by real-time PCR and WGA.
Keywords
whole genome amplification; genomic DNA; pathogen; detection; real-time PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010)   DOI
2 Ministry of Food and Drug Safety. Food Safety Information. Available from: http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=519&menu_grp= MENU_GRP02. Accessed Jan. 12, 2016.
3 Crim SM, Iwamoto M, Huang JY, Griffin PM, Gilliss D, Cronquist AB, Cartter M, Tobin-D'Angelo M, Blythe D, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG, Lance S, Tauxe R, Henao OL. Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance Network, 10 U.S. sites, 2006-2013. MMWR Morb. Mortal. Wkly Rep. 63: 328-32 (2014)
4 Bohaychuk VM, Gensler GE, McFall ME, King RK, Renter DG. A real-time PCR assay for the detection of Salmonella in a wide variety of food and food-animal matrices. J. Food Prot. 70: 1080-1087 (2007)   DOI
5 Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, Rutherford A. Isothermal whole genome amplification from single and small numbers of cells: A new era for preimplantation genetic diagnosis of inherited disease. Mol. Hum. Reprod. 10: 767-772 (2004)   DOI
6 Eckert KA, Kunkel TA. DNA polymerase fidelity and the polymerase chain reaction. Genome Res. 1: 17-24 (1991)   DOI
7 Uda A, Tanabayashi K, Fujita O, Hotta A, Yamamoto Y, Yamada A. Comparison of whole genome amplification methods for detecting pathogenic bacterial genomic DNA using microarray. Jpn. J. Infect. Dis. 60: 355-361 (2007)
8 Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA. 99: 5261-5266 (2002)   DOI
9 Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E. Two methods of wholegenome amplification enable accurate genotyping across a 2320- SNP linkage panel. Genome Res. 14: 901-907 (2004)   DOI
10 Dietmaier W, Hartmann A, Wallinger S, Heinmöller E, Kerner T, Endl E, Jauch KW, Hofstädter F, Rüschoff J. Multiple mutation analyses in single tumor cells with improved whole genome amplification. Am. J. Pathol. 154: 83-95 (1999)   DOI
11 Lasken RS, Egholm M. Whole genome amplification: Abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 21: 531-535 (2003)   DOI
12 Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: Implications for genetic analysis. Proc. Natl. Acad. Sci. USA. 89: 5847-5851 (1992)   DOI
13 Bachmann B, Luke W, Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 18: 1309 (1990)   DOI
14 Ellis RJ. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 26: 597-604 (2001)   DOI
15 Maheux AF, Bissonnette L, Boissinot M, Bernier JLT, Huppe V, Picard FJ, Berube E, Bergeron MG. Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and shigella species in potable water samples. Appl. Environ. Microbiol. 77: 6199-6207 (2011)   DOI
16 Renard A, di Marco PG, Egea-Cortines M, Weiss J. Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. Int. J. Food Microbiol. 126: 195-201 (2008)   DOI
17 Pomp D, Medrano JF. Organic solvents as facilitators of polymerase chain reaction. Biotechniques 10: 58-59 (1991)
18 Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J. Mol. Diagn. 8: 544-550 (2006)   DOI
19 Mamedov TG, Pienaar E, Whitney SE, TerMaat JR, Carvill G, Goliath R, Subramanian A, Viljoen HJ. A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem. 32: 452-457 (2008)   DOI