Browse > Article
http://dx.doi.org/10.9721/KJFST.2012.44.6.763

Antioxidant Activity of Different Parts of Lespedeza bicolor and Isolation of Antioxidant Compound  

Lee, Jae-Hak (Department of Animal Products and Food Science, Kangwon National University)
Jhoo, Jin-Woo (Department of Animal Products and Food Science, Kangwon National University)
Publication Information
Korean Journal of Food Science and Technology / v.44, no.6, 2012 , pp. 763-771 More about this Journal
Abstract
In this study, total antioxidant properties of extracts from different parts of Lespedeza bicolor were determined using techniques of measuring 1,1-diphenyl-2-picryl hydrazyl/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-radical scavenging activity and total phenolic contents. The total antioxidant activities of leaf, stem and root extracts from various solvents (water, 50, 70, 100% ethanol, and hot-water) indicated that 50 and 70% ethanol extracts have high radical scavenging activities and phenolic contents. A systematic approach was used to determine the total antioxidant activity of different solvent fractions of the Lespedeza bicolor extracts, partitioning with chloroform, ethyl acetate, n-butanol, and water, and the ethyl acetate fraction was found to have the strongest antioxidant activity. Antioxidant assay-guided isolation was carried out to isolate potential antioxidant compounds. The ethyl acetate fraction of the leaf extract was subjected to silica gel, LH-20 and RP-18 column chromatography successively, and afforded compound 1, which was identified as eriodictyol by NMR and MS analysis, after which its antioxidant activity was determined.
Keywords
Lespedeza bicolor; antioxidant activity; radical scavenging activity; flavonoid; eriodictyol;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B. 39: 44-84 (2007)   DOI   ScienceOn
2 Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press, New York, NY, USA. pp. 105-350 (1999)
3 Korea National Arboretum. Available from: http://www.kna.go.kr. Accessed Jun. 1, 2012.
4 Lee KI, Yang SA, Kim SM. Antioxidative and nitric oxide production inhibitory activities of Lespedeza bicolor stem extracts depending on solvents. Korean J. Medicinal Crop Sci. 19: 368-372 (2011)   DOI
5 Lee YS, Joo EY, Kim NW. Antioxidant activity of extracts from the Lespedeza bicolor. Korean J. Food Preserv. 12: 75-79 (2005)
6 Lee YS, Joo EY, Kim NW. Polyphenol contents and physiological activity of the Lespedeza bicolor extracts. Korean J. Food Preserv. 13: 616-622 (2006)
7 Ryu IS, Lee SJ, Lee SW, Mun YJ, Woo WH, Kim YM, Lee JC, Lim KS. Dermal bioactive properties of the ethanol extract from flowers of Lespedeza bicolor. J. Korean Oriental Medical Ophthalmol. & Otolaryngol. Dermatol. 20: 1-9 (2007)
8 Lee A, Kim BN, Zhoh CK, Shin GH. Studies on the antioxidative and antimicrobial effects of Lespedeza bicolor extracts. J. Korean Soc. Esthet. Cosmeceutics 1: 109-120 (2006)
9 Yang JK, Yeo HD, Baik SC, Jung JY, Kim BM, Jeong MJ, Lee CH, Karigar CS, Park HM, Choi MS. Antibacterial and immunomodulatory activity of ethanol extracts from Lespedeza sp. during Helicobacter pylori infections. Biotechnol. Bioprocess Eng. 15: 1077-1083 (2010)   DOI
10 Maximov OB, Kulesh NI, Stepanenko LS, Dmitrenok PS. New prenylated isoflavanones and other constituents of Lespedeza bicolor. Fitoterapia 75: 96-98 (2004)   DOI   ScienceOn
11 Tan L, Zhang XF, Yan BZ, Shi HM, Du LB, Zhang YZ, Wang LF, Tang YL, Liu Y. A novel flavonoid from Lespedeza virgata (Thunb.) DC.: Structural elucidation and antioxidative activity. Bioorg. Med. Chem. Lett. 17: 6311-6315 (2007)   DOI
12 Baek S, Kim J, Kim D, Lee C, Kim J, Chung DK, Lee C. Inhibitory effect of dalbergioidin isolated from the trunk of Lespedeza cyrtobotrya on melanin biosynthesis. J. Microbiol. Biotechnol. 18: 874-879 (2008)
13 Kwon DJ, Bae YS. Flavonoids from the aerial parts of Lespedeza cuneata. Biochem. Syst. Ecol. 37: 46-48 (2009)   DOI
14 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999)   DOI   ScienceOn
15 Kim EJ, Choi JY, Yu MR, Kim MY, Lee SH, Lee BH. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 44: 337-342 (2012)   DOI
16 Mori-Hongo M, Takimoto H, Katagiri T, Kimura M, Ikeda Y, Miyase T. Melanin synthesis inhibitors from Lespedeza floribunda. J. Nat. Prod. 72: 194-203 (2009)   DOI
17 Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958)   DOI   ScienceOn
18 Singleton VL, Rossi JAJ. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965)
19 Lee KI, Yang SA, Kim SM. Antioxidative and nitric oxide production inhibitory activities of Lespedeza bicolor stem extracts depending on solvent. Korean J. Medicinal Crop. Sci. 19: 368-372 (2011)   DOI
20 Wang LJ, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 17: 300-312 (2006)   DOI   ScienceOn
21 Lee YS, Chang Z, Park SC, Rim NR, Kim NW. Antioxidant activity and irritation response of Lespedeza bicolor. J. Toxicol. Pub. Health 21: 115-119 (2005)
22 Yang YJ, Kim HJ, Kang SH, Kang SC. Screening of natural herb resources for anti-oxidative effects in Korea. Korean J. Plant Res. 24: 1-9 (2011)   DOI
23 Kim SM, Jung YJ, Pan CH, Um BH. Antioxidant activity of methanol extracts from the genus Lespedeza. J. Korean Soc. Food Sci. Nutr. 39: 769-775 (2010)   DOI
24 Ohira T. Eriodictyol in the leaves of Lespedeza. Nippon Nogei K. Kaishi 9: 448-452 (1933)   DOI
25 Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53: 4290-4302 (2005)   DOI   ScienceOn
26 KFDA, Food materials information. Available from: http://fse.foodnara.go.kr. Accessed Jun. 1, 2012.
27 da Silva SAS, Agra MD, Tavares JF, da-Cunha EVL, Barbosa JM, da Silva MS. Flavanones from aerial parts of Cordia globosa (Jacq.) Kunth, Boraginaceae. Rev. Bras. Farmacogn. 20: 682-685 (2010)   DOI
28 Yun BS, Lee IK, Kim JP, Chung SH, Shim GS, Yoo ID. Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch. Pharm. Res. 23: 147-150 (2000)   DOI
29 Ismaili H, Sosa S, Brkic D, Fkih-Tetouani S, Ilidrissi A, Touati D, Aquino RP, Tubaro A. Topical anti-inflammatory activity of extracts and compounds from Thymus broussonettii. J. Pharm. Pharmacol. 54: 1137-1140 (2002)   DOI   ScienceOn
30 Bucolo C, Leggio GM, Drago F, Salomone S. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocininduced diabetic rats. Biochem. Pharmacol. 84: 88-92 (2012)   DOI
31 Johnson J, Maher P, Hanneken A. The flavonoid, eriodictyol, induces long-term protection in ARPE-19 cells through its effects on Nrf2 activation and phase 2 gene expression. Invest. Ophth. Vis. Sci. 50: 2398-2406 (2009)   DOI
32 Lee JK. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated Raw 264.7 murine macrophages. Arch. Pharm. Res. 34: 671-679 (2011)   DOI   ScienceOn