Browse > Article

Effect of Aqueous Chlorine Dioxide and Citric Acid Treatment on Microbial Safety and Quality Control of Minimally Processed and Refrigerated (MPR) Salad  

Youm, Hyoung-Jun (Department of Food Science and Technology, Chungnam National University)
Ko, Jong-Kwan (Department of Food Science and Technology, Chungnam National University)
Kim, Mee-Ree (Department of Food and Nutrition, Chungnam National University)
Cho, Yong-Sik (Agriproduct Science Division, Rural Resources Development Institute)
Chun, Hye-Kyung (Agriproduct Science Division, Rural Resources Development Institute)
Song, Kyung-Bin (Department of Food Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Food Science and Technology / v.37, no.1, 2005 , pp. 129-133 More about this Journal
Abstract
Aqueous chlorine dioxide and citric acid treatment was introduced to insure microbial safety of minimally processed and refrigerated (MPR) salad. Salad samples were treated with 50 ppm chlorine dioxide and 1% citric acid. Chemical treatment decreased total aerobic bacteria, yeast and molds, E. coli, and Listeria by 3.75, 3.47, 3.41, and 3.38 log cycles, respectively, and polyphenoloxidase activity of MPR salad by 49.73%. Plain water washing of salads did not effectively decrease microbial growth. These results indicate appropriate chemical treatment provides microbial safety and quality control in MPR salad during marketing.
Keywords
aqueous chlorine dioxide; minimally processed and refrigerated salad; microbial safety; polyphenoloxidase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ihl M, Aravena L, Scheuermann E, Uquiche E, Bifani V. Effect of immersion solution on shelf life of minimally processed lettuce. Lebensm.-Wiss. U.-Technol. 36: 591-599 (2003)   DOI   ScienceOn
2 Youm HJ, Jang JW, Kim KR, Kim HJ, Jeon EH, Park EK, Kim MR, Song KB. Effect of chemical treatment with citric acid or ozonated water on microbial growth and polyphenol oxidase activity in lettuce and cabbage. J. Food Sci. Nutr. 9: 121-125 (2004)   DOI
3 Kim JM. Use of chlorine dioxide as a biocide in the food industry. Food Ind. Nutr. 6: 33-39 (2001)
4 Moore G.S, Calabrese EJ, DiNardi SR, Tuthill RW. Potential health effect of chlorine dioxide as a disinfectant in potable water supplies. Med. Hypotheses 4: 481-496 (1978)   DOI   ScienceOn
5 Youm HJ, Ko JK, Kim MR, Song KB. Inhibitory effect of aqueous chlorine dioxide in survival of Esherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in pure cell culture. Korean J. Food Sci. Technol. 36: 514-517 (2002)
6 Taormina PJ, Beuchatn LR. Comparison of chemical treatment to eliminate enterohemorrhagic Escherichia coli O157:H7 on alfalfa seeds. J. Food Prot. 62: 318-324 (1999)   PUBMED
7 Carlin F, Nguyen-the C, Silva AAD. Factors affecting the growth of Listeria monocytogenes on minimally processed fresh endive. J. Appl. Bacteriol. 78: 636-646 (1995)   DOI
8 Demet K, Tulin A. Partial purification and characterization of polyphenoloxidase from peppermint (Mentha piperita) Food Chem. 74: 147-154 (2001)   DOI   ScienceOn
9 Han Y, Linton RH, Nielsen SS, Nelson PE. Inactivation of Escherichia coli O157:H7 on surface-uninjured and -injured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy. Food Microbiol. 17: 643-655 (2000)   DOI   ScienceOn
10 Singh N, Singh RK, Bhunia AK, Stroshine RL. Efficacy of chlorine dioxide, ozone, and thyme essential oil or sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm.-Wiss. U.-Technol. 35: 720-729 (2002)   DOI   ScienceOn
11 Lee SY, Gray PM, Dougherty RH, Kang DH. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples. Int. J. Food Microbiol. 92: 121-127 (2004)   DOI   ScienceOn
12 Gordon G, Kieffer RG, Rosenblatt DH. The chemistry of chlorine dioxide. Vol. 15, pp. 202-286. In: Progress in Inorganic Chemistry. Lippard SJ (ed). J. Wiley and Sons, New York, NY, USA (1972)
13 Hendrickx M, Ludikhuyze L, Van Den Broeck I, Weemaes C. Effect of high pressure on enzyme related to food quality. Trends Food Sci. Technol. 9: 197-203 (1998)   DOI   ScienceOn
14 Du J, Han Y, Linton RH. Efficacy of chlorine dioxide gas in reducing Escherichia coli O157:H7 on apple suefaces. Food Microbiol. 20: 583-591 (2003)   DOI   ScienceOn
15 APHA. Standard methods for the examination of water and wastewater. 19th ed. Method 4-54. American Public Health Association, Washington DC, USA (1995)
16 Beuchat LR, Nail BV, Adler BB, Clavero MRS. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Prot. 61: 1305-1311 (1998)   PUBMED
17 Beaulieu M, B'eliveau G, Daprano M, Lacroix M. Dose rate effect of $\gamma$-irradiation on phenolic compounds, polyphenoloxidase, and browning of mushrooms (Agaricus bisporusy. Food Chem. 47: 2537-2543 (1999)   DOI   ScienceOn
18 Gomes MRA, Ledward DA. Effect of high-pressure treatment on the activity of some polyphenoloxidase. Food Chem. 56: 1-5 (1996)   DOI   ScienceOn
19 Kraybill HF. Origin, classification and distribution of chemicals in drinking water with an assessment of their carcinogenic potential. Vol. 1, pp. 211-228. In: Water Chlorination. Jolly RL (ed). Ann Arbor Science, Ann Arbor, MI, USA (1978)
20 Singh N, Singh RK, Bhunia AK. Sequential disinfection of Escherichia coli O157:H7 inoculated alfalfa seeds before and during sprouting using aqueous chlorine dioxide, ozonzted water, and thyme essential oil. Lebensm.-Wiss. U.-Technol. 36: 235-243 (2003)   DOI   ScienceOn
21 Andrews LS, Key AM, Martin RL, Grodner R, Park DL. Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine. Food Microbiol. 19: 261-267 (2002)   DOI   ScienceOn
22 Jimenez-Villarreal JR, Pohlman FW, Johnson ZB, Brown Jr. AH. Effect of chlorine dioxide, cetylpyridinium chlorine, lactic acid and trisodium phosphate on physical and sensory properties of ground beef. Meat Sci. 65: 1055-1062 (2003)   DOI   ScienceOn
23 Boyette MD, Ritchie DF, Carballo SJ, Blankenship SM, Sanders DC. Chlorination and postharvest disease control. Hort. Technol. 3: 395-400 (1993)