Browse > Article
http://dx.doi.org/10.9723/jksiis.2020.25.1.025

Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC  

Lee, Jun-Yeop (창원대학교 전기공학과)
Lee, Seok-Ju (창원대학교 전기공학과)
Park, Minwon (창원대학교 전기공학과)
Publication Information
Journal of Korea Society of Industrial Information Systems / v.25, no.1, 2020 , pp. 25-30 More about this Journal
Abstract
Three-phase multi-layer high temperature superconducting coaxial (TPMHTSC) cable is being actively studied due to advantages such as the reduction of the amount of superconducting wire usage and the miniaturization of the cable. The electrical characteristics of TPMHTSC cables differ from those of conventional superconducting cables, so sufficient analysis is required to apply them to the actual system. In this paper, the authors modeled 22.9 kV, 60 MVA TPMHTSC cable and analyzed the transient characteristics using a PSCAD/EMTDC-based simulation. As a result, when a fault current flows in TPMHTSC cable, most of the fault current is bypassed through the copper former layers. At this time, the total cable temperature increased by about 5 K. Through this study, we can verify the reliability of the TPMHTSC cable against the transient state, and it can be helpful for the practical application of the cable in the future.
Keywords
Power cable; High-temperature superconductor; Superconducting power cable;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bang, J. H., Je, H. H., Kim, J. H., Sim, K. D., Cho, J., Yoon, J. Y., Park, M., and Yu, I. K.. (2007). Critical Current, Critical Temperature and Magnetic Field based EMTDC Model Component for HTS Power Cable, IEEE Transactions on Applied Superconductivity, 17(2), 1726-1729, https://doi.org/10.1109/TASC.2007.898034.   DOI
2 Ha, S. K., Kim, S. K., Kim, J. G., Park, M., Yu, I. K., Lee, S., Sim, K. D., and Kim, A. R. (2012). Fault Current Characteristic Analysis of a Tri-axial HTS Power Cable using PSCAD/EMTDC, IEEE Transactions on Applied Superconductivity, 23(3), 5400104-5400104. https://doi.org/10.1109/TASC.2012.2233261   DOI
3 Hamajima, T., Yagai, T., Tsuda, M., and Harada, N., (2005). Current Distribution Analysis in Tri-Axial HTS Cable Considering 3 Phases, IEEE Transactions on Applied Superconductivity, 15(2), 1775-1778. https://doi.org/10.1109/TASC.2005.849286.   DOI
4 Kelley, N., Mathan, M., and Masur, L.. (2001). Application of HTS Wire and Cables to Power Transmission: State of the Art and Opportunities, IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 448-454.
5 Kim, J. G., Lee, J., Kim, J. H., Kim, A. R., Cho, J., Sim, K. D., Kim, S, Lee, J. K., Park, M., and Yu, I. K.. (2009). HTS Power Cable Model Component Development for PSCAD/EMTDC considering Conducting and Shield Layers, IEEE Transactions on Applied Superconductivity, 19(3), 1785-1788. http://doi.org/101109/TASC.2009.2019434.   DOI
6 Kiss, T., Inoue, M., Hasegawa, K., Vysotsky, V. S., llyin Y., and Irie, E. (1999). Quench Characteristics in HTSC Devices, IEEE Transactions on Applied Superconductivity, 9(2), 1073-1076. https://doi.org/10.1109/77.783483   DOI
7 Lee, S. J. (2019). AC Loss Characteristic Analysis of Superconducting Power Cable for High Capacity Power Transmission, Korea Society of Industrial Information Systems Research, 24(2), 57-63, https://doi.org/10.9723/jksiis.2019.24.2.057.
8 Park, M., and Yu, I. K.. (2004). A Novel Real-time Simulation Technique of Photovoltaic Generation System using RTDS, IEEE Transactions on Energy Conversion, 19(1), 164-169. http://doi.org/10.1109/TEC.2003.821837.   DOI
9 Zhang, J. W., Hu, D., Zhang, L., Song, M., Luo, Y. S., Li, L., and Jin, Z. (2018). Numerical Study of the Thermal Stability of YBa2Cu3O7 − ${\delta}$ Tapes Suffering Lightning Current, IEEE Transactions on Applied Superconductivity, 28(5), 1-7. http://doi.org/10.1109/TASC.2018.2803023