Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.209

Density Functional Theory Study of Li Storage and Pathways at Graphene Edges  

Lee, Ji Hee (School of Chemical Engineering, Pusan National University)
Kwon, Sung Hyun (School of Chemical Engineering, Pusan National University)
Pham, Nguyet N.T. (School of Chemical Engineering, Pusan National University)
Kang, Haisu (Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign)
Lee, Ji Hye (Department of Organic Material Science and Engineering, Pusan National University)
Lee, Seung Geol (School of Chemical Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.59, no.4, 2022 , pp. 209-214 More about this Journal
Abstract
Graphene is widely used as an active material in various energy storage devices owing to its high mechanical strength, thermal transfer characteristics, electron transport property, electric conductivity, and large specific surface area. In this study, the storage and pathway of Li considering two types of graphene edge nanostructures were investigated via density functional theory (DFT) calculations. Because the graphene edge is typically divided into an armchair edge and a zigzag edge, the armchair and zigzag graphene edge models are constructed at the atomic level to investigate the effects of the graphene edge on the binding energy, diffusion pathway, and charge transfer from Li to the graphene plane using DFT.
Keywords
graphene; edge; zigzag; armchair; lithium; density functional theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. Dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, "Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect", Phys. Rev. Lett., 2007, 99, 216802.   DOI
2 Y. Q. Sun, Q. O. Wu, and G. Q. Shi, "Graphene Based New Energy Materials", Energy Environ. Sci., 2011, 4, 1113-1132.   DOI
3 L. Lu, "Recent Advances in Synthesis of Three-dimensional Porous Graphene and Its Applications in Construction of Electrochemical (bio)sensors for Small Biomolecules Detection", Biosens. Bioelectron., 2018, 110, 180-192.   DOI
4 X. Y. Zhang, J. Xin, and F. Ding, "The Edges of Graphene", Nanoscale, 2013, 5, 2556-2569.   DOI
5 N. N. T. Pham, K. H. Kim, B. Han, and S. G. Lee, "Theoretical Investigation of the Active Sites in N-Doped Graphene Bilayer for the Oxygen Reduction Reaction in Alkaline Media in PEMFCs", J. Phys. Chem. C, 2022, 126, 5863-5872.   DOI
6 T. Lee, W. Kwon, H. S. Kang, S. Chae, E. Kim, J. Kim, H. G. Chae, A. S. Lee, E. Jeong, J. H. Lee, and S. G. Lee, "Pyropolymerization of Organic Pigments for Superior Lithium Storage", Carbon, 2022, 188, 187-196.   DOI
7 K. A. Madurani, S. Suprapto, N. I. Machrita, S. L. Bahar, W. Illiya, and F. Kurniawan, "Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry", ECS J. Solid State Sci. Technol., 2020, 9, 093013.   DOI
8 A. Santhiran, P. Iyngaran, P. Abiman, and N. Kuganathan, "Graphene Synthesis and Its Recent Advances in Applications- A Review", C J. Carbon Res., 2021, 7, 76.   DOI
9 E. B. Bahadir and M. K. Sezginturk, "Applications of Graphene in Electrochemical Sensing and Biosensing", Trac-Trend Anal. Chem., 2016, 76, 1-14.   DOI
10 D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, "Mechanical Properties of Graphene and Graphene-based Nanocomposites", Prog. Mater. Sci., 2017, 90, 75-127.   DOI
11 S. Sarma, S. C. Ray, and A. M. Strydom, "Electronic and Magnetic Properties of Nitrogen Functionalized Grapheneoxide", Diamond Relat. Mater., 2017, 79, 1-6.   DOI
12 Y. J. Zhong, Z. Zhen, and H. W. Zhu, "Graphene: Fundamental Research and Potential Applications", Flatchem, 2017, 4, 20-32.   DOI
13 S. Schoche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, "Optical Properties of Graphene Oxide and Reduced Graphene Oxide Determined by Spectroscopic Ellipsometry", Appl. Surf. Sci., 2017, 421, 778-782.   DOI
14 J. Hass, W. A. de Heer, and E. H. Conrad, "The Growth and Morphology of Epitaxial Multilayer Graphene", J. Phys.: Condens. Matter, 2008, 20, 323202.   DOI
15 J. R. Dahn, T. Zheng, Y. H. Liu, and J. S. Xue, "Mechanisms for Lithium Insertion in Carbonaceous Materials", Science, 1995, 270, 590-593.   DOI
16 E. O. Polat, O. Balci, and C. Kocabas, "Graphene Based Flexible Electrochromic Devices", Sci. Rep., 2014, 4, 6484.   DOI
17 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 2006, 442, 282-286.   DOI
18 R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, "The Role of Graphene for Electrochemical Energy Storage", Nat. Mater., 2015, 14, 271-279.   DOI
19 G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comp. Mater. Sci., 1996, 6, 15-50.   DOI
20 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77, 3865-3868.   DOI
21 S. Kwon and S. G. Lee, "Density Functional Theory Study on Polybenzimidazole with Sulfonic Acid Functional Group for PEMFC Applications", Text. Sci. Eng., 2015, 52, 137-142.   DOI
22 S. Grimme, "Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction", J. Comput. Chem., 2006, 27, 1787-1799.   DOI
23 K. Momma and F. Izumi, "VESTA 3 for Three-dimensional Visualization of Crystal, Volumetric and Morphology Data", J. Appl. Crystallogr., 2011, 44, 1272-1276.   DOI
24 H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- Zone Integrations", Phys. Rev. B, 1976, 13, 5188-5192.   DOI
25 G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths", J. Chem. Phys., 2000, 113, 9901-9904.   DOI
26 G. Henkelman, A. Arnaldsson, and H. Jonsson, "A Fast and Robust Algorithm for Bader Decomposition of Charge Density", Comp. Mater. Sci., 2006, 36, 354-360.   DOI
27 S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, and T. Enoki, "Role of Edge Geometry and Chemistry in the Electronic Properties of Graphene Nanostructures", Faraday Discuss., 2014, 173, 173-199.   DOI
28 H. J. Seo, H. Kang, T. Lee, S. Chae, E. Kim, J. H. Lee, and S. G. Lee, "Correlation between Redox Active Sites and Sodium Storage Behavior in Dye/graphene Nanohybrids", Appl. Surf. Sci., 2022, 587, 152859.   DOI
29 J. H. Lee, S.-D. Yim, Y.-J. Sohn, and S. G. Lee, "Molecular Dynamics Simulations on Structural and Mass Transport Properties in the Catalyst Layer of PEMFCs", Text. Sci. Eng., 2022, 59, 146-154.
30 C. Uthaisar, V. Barone, and J. E. Peralta, "Lithium Adsorption on Zigzag Graphene Nanoribbons", J. Appl. Phys., 2009, 106, 113715.   DOI