Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.194

Liquid Metal Enabled Flexible Fiber Microelectrode for Dopamine Sensor Applications  

Lim, Taehwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Lee, Sohee (Department of Clothing and Textiles, Gyeongsang National University)
Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Publication Information
Textile Science and Engineering / v.59, no.4, 2022 , pp. 194-202 More about this Journal
Abstract
Gallium-based liquid metals have gained significant attention as promising material platforms for flexible bioelectronics owing to their fluidic behavior but still metallic. However, low electrochemical stability owing to oxidation may limit the use of bioelectronics that typically operate under physiological conditions. Here, we developed a liquid metal core/polymer shell fiber platform for flexibility. Then, nanostructured conductive poly(3,4-ethylenedioxythiophene) (PEDOT) was encapsulated on the liquid metal surface to prevent oxidation. Mechanical property measurement demonstrated that the platform displayed high flexibility and low Young's modulus that could minimize the mechanical mismatch between the fiber platform and soft human tissues. PEDOT encapsulation on the liquid metal surface offered the fiber platform-based electrode considerably higher electrochemical properties, such as lower impedance and higher charge storage capacity. The improved electrochemical performance enables the liquid metal-based fiber electrode to be used for electrochemical dopamine (DA) monitoring. This study demonstrated that the PEDOT structured flexible electrode had a sensitivity of 0.218±0.022 μA/μM and a limit of detection of 150 nM. Finally, the electrode could effectively detect DA under a plethora of byproducts produced by human metabolism. All the results confirmed the flexibility and remarkable electrochemical properties of the prepared liquid metal-based electrode, opening numerous design opportunities for next-generation liquid metal-based bioelectronics.
Keywords
liquid metal; flexible electrode; electrochemical property; PEDOT; dopamine sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. P. Randviir and C. E. Banks, "Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications", Anal. Methods, 2013, 5, 1098-1115.   DOI
2 Z. Rao, F. Ershad, A. Almasri, L. Gonzalez, X. Wu, and C. Yu, "Soft Electronics for the Skin: From Health Monitors to Human-Machine Interfaces", Adv. Mater. Technol., 2020, 5, 2000233.   DOI
3 C. Choi, Y. Lee, K. W. Cho, J. H. Koo, and D. H. Kim, "Wearable and Implantable Soft Bioelectronics Using Two- Dimensional Materials", Acc. Chem. Res., 2019, 52, 73-81.   DOI
4 R. Panhwar, N. Soni, A. Sikandar, A. Raza, K. C. Sun, I. A. Sahito, and S. H. Jeong, "Binder-free Graphene Printed Flexible and Conductive Cotton Fabric for E-textile Applications", Text. Sci. Eng., 2021, 58, 113-117.
5 C. Wei, H. Fei, Y. Tian, Y. An, G. Zeng, J. Feng, and Y. Qian, "Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next- Generation Lithium-Ion Batteries", Small, 2019, 15, 1903214.   DOI
6 M. Ku, J. Kim, J. E. Won, W. Kang, Y. G. Park, J. Park, J. H. Lee, J. Cheon, H. H. Lee, and J. U. Park, "Smart, Soft Contact Lens for Wireless Immunosensing of Cortisol", Sci. Adv., 2020, 6, eabb2891.   DOI
7 T. Lim, M. Kim, A. Akbarian, J. Kim, P. A. Tresco, and H. Zhang, "Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronics Applications", Adv. Healthcare Mater., 2022, 11, 2102382.   DOI
8 T. Lim and K. W. Oh, "Electrical Property of Polypyrrole/ MWCNT-g-PSSA Composite", Text Sci. Eng., 2011, 48, 6-13.
9 J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in an Aqueous Environment", ACS Appl. Mater. Interfaces, 2018, 10, 17448-17454.   DOI
10 X. Wang, X. Zhang, L. Sun, D. Lee, S. Lee, M. Wang, J. Zhao, Y. Shao-Horn, M. Dinca, T. Palacios, and K. K. Gleason, "High Electrical Conductivity and Carrier Mobility in oCVD PEDOT Thin Films by Engineered Crystallization and Acid Treatment", Sci. Adv., 2018, 4, eaat5780.   DOI
11 C. Xu, F. Wu, P. Yu, and L. Mao, "In vivo Electrochemical Sensors for Neurochemicals: Recent Update", ACS Sens., 2019, 4, 3102-3118.   DOI
12 D. Kim, P. Thissen, G. Viner, D. Lee, W. Choi, Y. J. Chabal, and J. B. Lee, "Recovery of Nonwetting Characteristics by Surface Modification of Gallium-based Liquid Metal Droplets Using Hydrochloric Acid Vapor", ACS Appl. Mater. Interfaces, 2013, 5, 179-185.   DOI
13 J. H. So, H. J. Koo, M. D. Dickey, and O. D. Velev, "Ionic Current Rectification in Soft-matter Diodes with Liquid-metal Electrodes", Adv. Funct. Mater., 2012, 22, 625-631.   DOI
14 T. D. Y. Kozai, N. B. Langhals, P. R. Patel, X. Deng, H. Zhang, K. L. Smith, J. Lahann, N. A. Kotov, and D. R. Kipke, "Ultrasmall Implantable Composite Microelectrodes with Bioactive Surfaces for Chronic Neural Interfaces", Nat. Mater., 2012, 11, 1065-1073.   DOI
15 T. Daeneke, K. Khoshmansh, N. Mahmood, I. A. de Castro, D. Esrafilzadeh, S. J. Barrow, M. D. Dickey, and K. Kalantarzadeh, "Liquid Metals: Fundamentals and Applications in Chemistry", Chem. Soc. Rev., 2018, 47, 4073-4111.   DOI
16 D. Morales, N. A. Stoute, Z. Yu, D. E. Aspnes, and M. D. Dickey, "Liquid Gallium and the Eutectic Gallium Indium (EGaIn) Alloy: Dielectric Functions from 1.24 to 3.1 eV by Electrochemical Reduction of Surface Oxides", Appl. Phys. Lett., 2016, 109, 091905.   DOI
17 S. Holcomb, M. Brothers, A. Diebold, W. Thatcher, D. Mast, C. Tabor, and J. Heikenfeld, "Oxide-free Actuation of Gallium Liquid Metal Alloys Enabled by Novel Acidified Siloxane Oils", Langmuir, 2016, 32, 12656-12663.   DOI
18 T. Lim, T. A. Ring, and H. Zhang, "Chemical Analysis of the Gallium Surface in a Physiologic Buffer", Langmuir, 2022, 38, 6817-6825.   DOI
19 Y. Si, Y. E. Park, J. E. Lee, and H. J. Lee, "Nanocomposites of poly(L-methionine), Carbon Nanotube-graphene Complexes and Au Nanoparticles on Screen Printed Carbon Electrodes for Electrochemical Analyses of Dopamine and Uric Acid in Human Urine Solutions", Analyst, 2020, 145, 3656-3665.   DOI
20 M. Hsu, Y. Chen, C. Lee, and H. Chiu, "Gold Nanostructures on Flexible Substrates as Electrochemical Dopamine Sensors", ACS Appl. Mater. Interfaces, 2012, 4, 5570-5575.   DOI
21 M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, and J. Simonato, "Progress in Understanding Structure and Transport Properties of PEDOT-based Materials: A Critical Review", Prog. Mater. Sci., 2020, 108, 100616.   DOI
22 S. H. Cho, T. S. Kang, and J. Y. Lee, "Elastic Textile Fabric Composite with High Electrical Conductivity as a Strain Sensor for Large Deformation", Text. Sci. Eng., 2007, 44, 86-89.
23 S. Hou, M. L. Kasner, S. Su, K. Patel, and R. Cuellari, "Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene", J. Phys. Chem. C, 2010, 114, 14915-14921.   DOI
24 B. J. Venton and Q. Cao, "Fundamentals of Fast-scan Cyclic Voltammetry for Dopamine Detection", Analyst, 2020, 145, 1158-1168.   DOI
25 K. O. Kim and G. J. Kim, "Amperometric Properties of Immobilized Glucose Oxidase on a Cellulose Nanomembrane Patch Sensor", Text. Sci. Eng., 2018, 55, 22-28.
26 Y. Song, H. Yamamoto, and N. Nemoto, "Segmental Orientations and Deformation Mechanism of Poly(etherblock- amide) Films", Macromolecules, 2004, 37, 6219-6226.   DOI
27 T. Lim and H. Zhang, "Multilayer Carbon Nanotube/gold Nanoparticle Composites on Gallium-based Liquid Metals for Electrochemical Biosensing", ACS Appl. Nano Mater., 2021, 4, 12690-12701.   DOI
28 T. Lim, S. Won, I. W. Nam, J. S. Choi, C. H. Kim, T. H. Kim, J. H. Kim, S. Y. Yeo, H. Zhang, and B. J. Yeang, "Gold Nanoparticle/carbon Fiber Hybrid Structure from the Ecofriendly and Energy-efficient Process for Electrochemical Biosensing", ACS Sustainable Chem. Eng., 2022, 10, 8815-8824.   DOI
29 R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu, Z. Liu, T. Luo, S. Choi, K. Hippalgaonkar, M. P. de Boer, and S. Shen, "Crystalline Polymer Nanofibers with Ultra-high Strength and Thermal Conductivity", Nat. Commun., 2018, 9, 1664.   DOI
30 T. Kida, K. Hamasaki, Y. Hiejima, S. Maeda, and K. Nitta, "Microscopic Origin of Elastic and Plastic Deformation in poly(ether-block-amide) Elastomers under Various Conditions", J. Soc. Rheology, Japan, 2020, 48, 153-160.   DOI
31 N. Rahman, A. Isanasari, R. Anggraeni, S. Honggokusumo, M. Iguchi, T. Masuko, and K. Tashiro, "Modern Interpretation on the High-stretching of Natural Rubber Attained by the Classic 'Racking' Method", Polymer, 2003, 44, 283-288.   DOI
32 J. K. Keum, H. Jeon, H. H. Song, J. Choi, and Y. Son, "Orientation-induced Crystallization of Poly(ethylene terephthalate) Fiber with Controlled Microstructure", Polymer, 2008, 49, 4882-4888.   DOI
33 S. Byun, J. Y. Sim, Z. Zhou, J. Lee, R. Qazi, M. C. Walicki, K. E. Parker, M. P. Haney, S. H. Choi, A. Shon, G. B. Gereau, J. Bilbily, S. Li, Y. Liu, W. Yeo, J. G. McCall, J. Xiao, and J. Jeong, "Mechanically Transformative Electronics, Sensors, and Implantable Devices", Sci. Adv., 2019, 5, eaay0418.   DOI
34 L. Luan, X. Wei, Z. Zhao, J. J. Siegel, O. Potnis, C. A. Tuppen, S. Lin, S. Kazmi, R. A. Fowler, S. Holloway, A. K. Dunn, R. A. Chitwood, and C. Xie, "Ultraflexible Nanoelectronic Probes form Reliable, Glial Scar-free Neural Integration", Sci. Adv., 2017, 3, e1601966.   DOI
35 M. Fazel, H. R. Salimijazi, and M. Shamanian, "Improvement of Corrosion and Tribocorrosion Behavior of Pure Titanium by Subzero Anodic Spark Oxidation", ACS Appl. Mater. Interfaces, 2018, 10, 15281-15287.   DOI
36 H. Zhang, J. Shih, J. Zhu, and N. A. Kotov, "Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Device", Nano Lett., 2012, 12, 3391-3398.   DOI
37 M. D. Dickey, "Stretchable and Soft Electronics Using Liquid Metals", Adv. Mater., 2017, 29, 1606425.   DOI
38 Y. Ding, X. Guo, Y. Qian, L. Zhang, L. Xue, J. B. Goodenough, and G. Yu, "A Liquid-Metal-Enabled Versatile Organic Alkali- Ion Battery", Adv. Mater., 2019, 31, 1806956.   DOI
39 Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y. Chai, and Z. Zheng, "Permeable Superelastic Liquid-metal Fibre Mat Enables Biocompatible and Monolithic Stretchable Electronics", Nat. Mater., 2021, 20, 859-868.   DOI
40 R. Guo and J. Liu, "Implantable Liquid Metal-based Flexible Neural Microelectrode Array and Its Application in Recovering Animal Locomotion Functions", J. Micromech. Microeng., 2017, 27, 104002.   DOI