Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.171

A Study of Thermo-mechanical Properties of (Ti1-xHfx)N Solid Solution of High-strength and Heat-resistant Coated Fabrics for Fire Proximity Suits  

Kim, Hyokyeong (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Joonchul (School of Mechanical Engineering, Soongsil University)
Chun, Sehwan (Department of Organic Materials and Fiber Engineering, Soongsil University)
Jin, Sehoon (Department of Organic Materials and Fiber Engineering, Soongsil University)
Choi, Yoon-Seung (Department of Smart Wearables Engineering, Soongsil University)
Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Textile Science and Engineering / v.59, no.3, 2022 , pp. 171-179 More about this Journal
Abstract
We investigated temperature-dependent elastic properties of (Ti1-xHfx)N solid solutions via first principles calculations. The precise convergence tests were performed to obtaining reliable results. Equilibrium structure information of the (Ti1-xHfx)N was in a good agreement with previous results indicated the reliability of the results. The difference between the bulk moduli of TiN and HfN at 0 K and 3000 K is approximately 30 GPa, indicating that the elastic properties are not well maintained at high temperatures. At each temperature, the shear, and Young's moduli of (Ti0.5Hf0.5)N were greater than those of HfN. In addition, (Ti0.5Hf0.5)N maintained its high hardness, which was not significantly affected by temperature. As a result, ternary nitride, such as (Ti0.5Hf0.5)N, is a more promising material for extreme environments than a simple binary system. The results of this study will provide useful information on how to develop new (Ti1-xHfx)N coating materials for fire proximity suits.
Keywords
elastic properties; temperature-dependent properties; first principles; fire proximity suit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50.   DOI
2 P. E. Blochl, O. Jepsen, and O. K. Andersen, "Improved Tetrahedron Method for Brillouin-zone Integrations", Phys. Rev. B, 1994, 49, 16223.   DOI
3 M. A. Meyers and K. K. Chawla, "Mechanical Behavior of Materials", Cambridge University Press, 2008.
4 W. Meng and G. Eesley, "Growth and Mechanical Anisotropy of TiN Thin Films", Thin Solid Films, 1995, 271, 108-116.   DOI
5 J. Kim and S. Kang, "Elastic and Thermo-physical Properties of TiC, TiN, and Their Intermediate Composition Alloys Using ab Initio Calculations", J. Alloys Compd., 2012, 528, 20-27.   DOI
6 M. Pang, Y. Peng, P. Zhou, and Y. Du, "Thermodynamic Modeling of the Hf-N System", J. Mining and Metallurgy, Section B: Metallurgy, 2018, 54, 111-118.   DOI
7 M. Blanco, E. Francisco, and V. Luana, "GIBBS: Isothermal-isobaric Thermodynamics of Solids from Energy Curves Using a Quasi-harmonic Debye Model", Comput. Phys. Commun., 2004, 158, 57-72.   DOI
8 A. Reuss, "Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9, 49-58.   DOI
9 R. Hill, "The Elastic Behaviour of a Crystalline Aggregate", Proceedings of the Physical Society, Section A, 1952, 65, 349.   DOI
10 J. Kim and S. Kang, "First Principles Investigation of Temperature and Pressure Dependent Elastic Properties of ZrC and ZrN Using Debye-Gruneisen Theory", J. Alloys Compd., 2012, 540, 94-99.   DOI
11 X.-Q. Chen, H. Niu, D. Li, and Y. Li, "Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses", Intermetallics, 2011, 19, 1275-1281.   DOI
12 S.-H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, "Electronic Mechanism of Hardness Enhancement in Transition-metal Carbonitrides", Nature, 1999, 399, 132-134.   DOI
13 Z. Liu, B. Burton, S. Khare, and D. Gall, "First-principles Phase Diagram Calculations for the Rocksalt-structure Quasibinary Systems TiN-ZrN, TiN-HfN and ZrN-HfN", J. Phys.: Condensed Matter, 2016, 29, 035401.   DOI
14 W.-W. Xu, F. Xia, L. Chen, M. Wu, T. Gang, and Y. Huang, "High-temperature Mechanical and Thermodynamic Properties of Silicon Carbide Polytypes", J. Alloys Compd., 2018, 768, 722-732.   DOI
15 Z. Gao, J. Buchinger, N. Koutna, T. Wojcik, R. Hahn, and P. H. Mayrhofer, "Ab Initio Supported Development of TiN/MoN Superlattice Thin Films with Improved Hardness and Toughness", Acta Materialia, 2022, 231, 117871.   DOI
16 V. Zhukov, V. A. Gubanov, O. Jepsen, N. E. Christensen, and O. K. Andersen, "Calculated Energy-band Structures and Chemical Bonding in Titanium and Vanadium Carbides, Nitrides and Oxides", J. Phys. Chem. Solids, 1988, 49, 841-849.   DOI
17 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77, 3865.   DOI
18 W. Voigt, "Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik)", BG Teubner, Vol. 34, 1910.
19 A. Ghazy, "On the Performance of Firefighting Suits Under Different Patterns of Firefighter's Movement: Radiation Heat Transfer Between Layers of the Suit", Fire Technol., 2022, 58, 1-22.   DOI
20 J. Karthikeyan and M. Mayuram, "Ceramic Coating Technology", Sadhana, 1988, 13, 139-156.   DOI
21 W. Lengauer, R. Taubler, J. Bauer, J. Debuigne, and P. Ettmayer, "Titanium '92, Science and Technology", The Minerals, Metals, and Materials Society, Warrendale, PA, 1993, pp.675-682.
22 H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations", Phys. Rev. B, 1976, 13, 5188.   DOI
23 X.-G. Lu, M. Selleby, and B. Sundman, "Calculations of Thermophysical Properties of Cubic Carbides and Nitrides Using the Debye-Gruneisen Model", Acta Materialia, 2007, 55, 1215-1226.   DOI
24 Z.-Y. Jiao, S.-H. Ma, X.-Z. Zhang, and X.-F. Huang, "Pressure-induced Effects on Elastic and Mechanical Properties of TiC and TiN: a DFT Study", EPL (Europhysics Letters), 2013, 101, 46002.   DOI
25 K. Chen and L. Zhao, "Elastic Properties, Thermal Expansion Coefficients and Electronic Structures of Ti0.75X0.25C Carbides", J. Phys. Chem. Solids, 2007, 68, 1805-1811.   DOI
26 A. Srivastava and B. D. Diwan, "Structural and Elastic Properties of ZrN and HfN: Ab Initio Study", Canadian J. Phys., 2014, 92, 1058-1061.   DOI
27 Y. Tian, B. Xu, and Z. Zhao, "Microscopic Theory of Hardness and Design of Novel Superhard Crystals", Int. J. Refractory Metals and Hard Mater., 2012, 33, 93-106.   DOI
28 B. Wang, X. Lai, H. Li, C. Jiang, J. Gao, and X. Zeng, "Multifunctional MXene/Chitosan-coated Cotton Fabric for Intelligent Fire Protection", ACS Appl. Mater. Interfaces, 2021, 13, 23020-23029.   DOI
29 A. Zaoui, B. Bouhafs, and P. Ruterana, "First-principles Calculations on the Electronic Structure of TiCxN1-x, ZrxNb1-xC and HfCxN1-x alloys", Mater. Chem. Phys., 2005, 91, 108-115.   DOI
30 D. Barr, W. Gregson, and T. Reilly, "The Thermal Ergonomics of Firefighting Reviewed", Applied Ergonomics, 2010, 41, 161-172.   DOI
31 D. Rickerby, A. Jones, and B. Bellamy, "Internal Stress in Titanium Nitride Coatings: Modelling of Complex Stress Systems", Surf. Coat. Technol., 1988, 36, 661-674.   DOI