Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.163

Synthesis and Characterization of Fluorescent Supramolecular Polymers Bearing Pyrene Pendents with Different Spacer Length  

Kim, Hee Jung (Department of Organic Materials and Fiber Engineering, Soongsil University)
Yoo, Young Jun (Department of Organic Materials and Fiber Engineering, Soongsil University)
Noh, Kyung Tak (Department of Organic Materials and Fiber Engineering, Soongsil University)
Chung, Jae Woo (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Textile Science and Engineering / v.59, no.3, 2022 , pp. 163-170 More about this Journal
Abstract
We synthesize ureido-pyrimidinone (UPy)-based semicrystalline supramolecular polymers bearing pyrene pendants (Py-UPCL) and investigate the pyrene spacer length effect on their supramolecular structure, optical, thermal, and mechanical properties. Nuclear magnetic resonance (NMR) spectroscopy, capillary viscometry, fluorescence spectroscopy, and differential scanning calorimetry (DSC) show that the supramolecular chain extension and crosslinking, i.e., the formation of supramolecular network structure, occurs in Py-UPCL by the UPy quadruple hydrogen bonding and the pyrene π-π interaction. In particular, the specific viscosities of Py-1-UPCL with shorter pyrene spacer is higher than Py-4-UPCL with longer pyrene spacer, and the excimer to monomer intensity ratio (IE/IM) of Py-1-UPCL (74.9) is higher than that of Py-4-UPCL (14.21), which indicates that shorter pyrene spacer length stronger formation of the supramolecular network structure. In addition, Py-4-UPCL (37.7 J g-1) has lower PCL melting enthalpy than Py-1-UPCL (53.5 J g-1) because of a bulky pyrene topology caused by longer spacer length. As a result, Py-4-UPCL exhibits two times lower strength and seven times smaller strain compared to Py-1-UPCL.
Keywords
supramolecular polymer; ureidopyrimidinone (UPy); polycaprolactone (PCL); pyrene; fluorescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. K. Bains, S. H. Kim, E. J. Sorin, and V. Narayanaswami, "The Extent of Pyrene Excimer Fluorescence Emission Is a Reflector of Distance and Flexibility: Analysis of the Segment Linking the LDL Receptor-Binding and Tetramerization Domains of Apolipoprotein E3", Biochemistry, 2012, 51, 6207-6219.   DOI
2 D. W. R. Balkenende, C. A. Monnier, G. L. Fiore, and C. Weder, "Optically Responsive Supramolecular Polymer Glasses", Nat. Commun., 2016, 7, 10995.   DOI
3 M. Wei, M. Zhan, D. Yu, H. Xie, M. He, K. Yang, and Y. Wang, "Novel Poly(tetramethylene ether)glycol and Poly(ε-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity", ACS Appl. Mater. Interfaces, 2015, 7, 2585-2596.   DOI
4 J. Sautaux, L. Montero de Espinosa, S. Balog, and Christoph Weder, "Multistimuli, Multiresponsive Fully Supramolecular Orthogonally Bound Polymer Networks", Macromolecules, 2018, 51, 5867-5874.   DOI
5 J. Duhamel, "New Insights in the Study of Pyrene Excimer Fluorescence to Characterize Macromolecules and Their Supramolecular Assemblies in Solution", Langmuir, 2012, 28, 6527-6538.   DOI
6 H. Ma, F. Wang, W. Li, Y. Ma, X. Yao, D. Lu, Y. Yang, Z. Zhang, and Z. Lei, "Supramolecular Assemblies of Azobenzene-β-cyclodextrin Dimers and Azobenzene Modified Polycaprolactones", J. Phys. Org. Chem., 2014, 27, 722-728.   DOI
7 E. Ostmark, L. Macakova, T. Auletta, M. Malkoch, E. Malmstro, and E. Blomberg, "Dendritic Structures Based on Bis(hydroxymethyl)propionic Acid as Platforms for Surface Reactions", Langmuir, 2005, 21, 4512-4519.   DOI
8 M. V. Biyani, E. J. Foster, and C. Weder, "Light-Healable Supramolecular Nanocomposites Based on Modified Cellulose Nanocrystals", ACS Macro Lett., 2013, 2, 236-240.   DOI
9 D. J. M. Van Beek, A. J. H. Spiering, G. W. M. Peters, K. te Nijenhuis, and R. P. Sijbesma, "Unidirectional Dimerization and Stacking of Ureidopyrimidinone End Groups in Polycaprolactone Supramolecular Polymers", Macromolecules, 2007, 40, 8464-8475.   DOI
10 J. Hentschel, A. M. Kushner, J. Ziller, and Z. Guan, "Self-Healing Supramolecular Block Copolymers", Angewandte Chemi, 2012, 124, 10713-10717.   DOI
11 J. H. Yang, J. Lee, S. Lim, S. Jung, S. H. Jang, S. Jang, S. Y. Kwak, S. Ahn, Y. C. Jung, R. D. Priestley, and J. W. Chung, "Understanding and Controlling the Self-healing Behavior of 2-ureido-4[1H]-pyrimidinone-functionalized Clustery and Dendritic Dual Dynamic Supramolecular Network", Polymer, 2019, 172, 13-26.   DOI
12 W. Lee, S. Y. Kwak, and J. W. Chung, "Arm-length-dependent Phase Transformation and Dual Dynamic Healing Behavior of Supramolecular Networks Consisting of Ureidopyrimidinone-end-functionalized Semi-crystalline Star Polymer", Eur. Polym. J., 2020, 138, 109976.   DOI
13 S. Yoshida, H. Ejima, and N. Yoshie, "Tough Elastomers with Superior Self-Recoverability Induced by Bioinspired Multiphase Design", Adv. Funct. Mater., 2017, 27, 1701670.   DOI
14 H. Yan, Q. Jiang, J. Wang, S. Cao, Y. Qiu, H. Wang, Y. Liao, and X. Xie, "A Triple-stimuli Responsive Supramolecular Hydrogel Based on Methoxy-azobenzene-grafted Poly(acrylic acid) and β-cyclodextrin Dimer", Polymer, 2021, 221, 123617.   DOI
15 X. Wang, J. Wang, Y. Yang, F. Yang, and D. Wu, "Fabrication of Multi-stimuli Responsive Supramolecular Hydrogels Based on Host-guest Inclusion Complexation of a Tadpole-shaped Cyclodextrin Derivative with the Azobenzene Dimer", Polym. Chem., 2017, 8, 3901-3909.   DOI
16 D. Sahoo, V. Narayanaswami, C. M. Kay, and R. O. Ryan, "Pyrene Excimer Fluorescence: A Spatially Sensitive Probe To Monitor Lipid-Induced Helical Rearrangement of Apolipophorin III", Biochemistry, 2000, 39, 6594-6601.   DOI
17 S. H. Jang, J. Lee, J. W. Chung, and S. H. Kim, "Effects of Macromonomeric Length of Ureidopyrimidinone-Induced Supramolecular Polymers on Their Crystalline Structure and Mechanical/Rheological Properties", Macromol. Res., 2019, 27, 729-737.   DOI
18 S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, and S. J. Rowan, "A Healable Supramolecular Polymer Blend Based on Aromatic π-π Stacking and Hydrogen-Bonding Interactions", J. Am. Chem. Soc., 2010, 132, 12051-12058.   DOI
19 B. Neises and W. Steglich, "Simple Method for the Esterification of Carboxylic", Angewandte Chemie, 1978, 17, 522-524.   DOI
20 C. Bonneaud, M. Decostanzi, J. Burgess, G. Trusiano, T. Burgess, R. Bongiovanni, C. Joly-Duhamel, and C. M. Friesen, "Synthesis of α,β-unsaturated Esters of Perfluoropolyalkylethers (PFPAEs) Based on Hexafluoropropylene Oxide Units for Photopolymerization", RSC Adv., 2018, 8, 32664-32671.   DOI
21 T. F. A. de Greef, G. Ercolani, G. Ligthart, E. W. Meijer, and R. P. Sijbesma, "Influence of Selectivity on the Supramolecular Polymerization of AB-Type Polymers Capable of Both A.A and A.B Interactions", J. Am. Chem. Soc., 2008, 130, 13755-13764.   DOI