Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.138

The Physical Properties and Structural Changes of Flexible MAPbI3 Thin Films according to the Fabrication Method  

Yoon, Haeun (School of Chemical Engineering, Pusan National University)
Hong, Seungyeon (School of Chemical Engineering, Pusan National University)
Lee, Sung Hun (School of Chemical Engineering, Pusan National University)
Kim, Hyo Jung (School of Chemical Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.59, no.3, 2022 , pp. 138-145 More about this Journal
Abstract
The structural analysis is essential for the development of flexible metal-halide perovskite solar cell devices because its performance is critically influenced by the mechanical external stress. Here, we investigated the effect of mechanical stress on metal-halide perovskite films prepared by powder-based method different from conventional precursor solution method. Before studying the effect of the mechanical stress, we confirmed the MAPbI3 powder crystal structure through Rietveld refinement of powder x-ray diffraction data. We fabricated thin films with powder-based method and compared their crystal structures using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS), which showed no significant differences from films based on conventional solution method. To investigate the mechanical stress effect on the perovskite film, we prepared MAPbI3 layer on PEN substrates and compared the crystalline structural changes after bending test. In the case of conventional MAPbI3 layer, intergranular crack was observed, while the transgranular crack was formed in the powder-based MAPbI3 layer after bending test. Finally, we fabricated a solar cell device on the polyethylene naphthalate (PEN) substrate and investigated changes of the J-V characteristics after mechanical stress.
Keywords
perovskite powder; Rietveld refinement; X-ray diffraction; flexible photovoltaic; bending test; stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Lee, M.-C. Kim, Y. W. Choi, N. Ahn, J. Jang, J. Yoon, S. M. Kim, J.-G. Lee, D. Kang, H. S. Jung, and M. Choi, "Ultra-flexible Perovskite Solar Cells with Crumpling Durability: Toward a Wearable Power Source", Energy Environ. Sci., 2019, 12, 3182-3191.   DOI
2 H. S. Jung, G. S. Han, N.-G Park, and M. J. Ko, "Flexible Perovskite Solar Cells", Joule, 2019, 3, 1850-1880.   DOI
3 M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, "Cesium-containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency", Energy Environ. Sci., 2016, 9, 1989-1997.   DOI
4 R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Horantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, "Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells", Adv. Energy Mater., 2016, 6, 1502458.   DOI
5 S. D. Samuel, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber", Science, 2013, 342, 341-344.   DOI
6 D.-H. Song, J. H. Heo, H. J. Han, M. S. You, and S. H. Im, "Reproducible Formation of Uniform CH3NH3PbI3-xClx Mixed Halide Perovskite Film by Separation of the Powder Formation and Spin-coating Process", J. Power Sources, 2016, 310, 130-136.   DOI
7 Y. C. Choi, S. W. Lee, and D.-H. Kim, "Antisolvent-assisted Powder Engineering for Controlled Growth of Hybrid CH3NH3PbI3 Perovskite Thin Films", APL Mater., 2017, 5, 026101.   DOI
8 Y. C. Choi, S. W. Lee, H. J. Jo, D.-H. Kim, and S.-J. Sung, "Controlled Growth of Organic-inorganic Hybrid CH3NH3PbI3 Perovskite Thin Films from Phase-controlled Crystalline Powders", RSC Adv., 2016, 6, 104359-104365.   DOI
9 J. H. Heo and S. H. Im, "Highly Reproducible, Efficient Hysteresis-less CH3NH3PbI(3-x)Cl(x) Planar Hybrid Solar Cells without Requiring Heat-treatment", Nanoscale, 2016, 8, 2554-2560.   DOI
10 Y. Zhang, S. Seo, S. Y. Lim, Y. Kim, S.-G. Kim, D.-K. Lee, S.-H. Lee, H. Shin, H. Cheong, and N.-G. Park, "Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI3 Powder", ACS Energy Lett., 2019, 5, 360-366.   DOI
11 B. H. Toby, "R Factors in Rietveld Analysis: How Good is Good Enough?", Powder Diffr., 2012, 21, 67-70.   DOI
12 G. S. Shin, Y. Zhang, and N. G. Park, "Stability of Precursor Solution for Perovskite Solar Cell: Mixture (FAI+PbI2) Versus Synthetic FAPbI3 Crystal", ACS Appl. Mater. Interfaces, 2020, 12, 15167-15174.   DOI
13 S.-W. Wi, "Grain Sorting Technique for X-ray Micro-diffraction and Rietveld Refinement on Polycrystalline", Ph.D. Thesis, Soongsil University, Seoul, Korea, 2020.
14 H. M. Rietveld, "A Profile Refinement method for Nuclear and Magnetic Structures", J. Appl. Cryst., 1969, 2, 65-71.   DOI
15 S. Li, X. Liu, V. Anand, and B. Lv, "Superconductivity from Site-selective Ru Doping Studies in Zr5Ge3 Compound", New J. Phys., 2018, 20, 013009.   DOI
16 L. Pei, H. Yu, Q. Zhang, J. Li, K. Wang, and B. Hu, "Concave and Convex Bending Influenced Mechanical Stability in Flexible Perovskite Solar Cells", J. Phys. Chem. C, 2020, 124, 2340-2345.   DOI
17 S. H. Lee, S. Hong, S. An, T.-Y. Jeon, and H. J. Kim, "Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells", Electron. Mater. Lett., 2020, 16, 588-594.   DOI
18 S. Kavadiya, J. Strzalka, D. M. Niedzwiedzki, and P. Biswas, "Crystal Reorientation in Methylammonium Lead Iodide Perovskite Thin Film with Thermal Annealing", J. Mater. Chem., 2019, 7, 12790-12799.   DOI
19 K. He, N. Chen, C. Wang, L. Wei, and J. Chen, "Method for Determining Crystal Grain Size by X-Ray Diffraction", Cryst. Res. Technol., 2018, 53, 1700157.   DOI
20 C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, "Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-infrared Photoluminescent Properties", Inorg. Chem., 2013, 52, 9019-9038.   DOI
21 Y. Zhang, S. G. Kim, D. K. Lee, and N. G. Park, "CH3NH3PbI3 and HC(NH2)2PbI3 Powders Synthesized from Low-Grade PbI2 : Single Precursor for High-Efficiency Perovskite Solar Cells", ChemSusChem, 2018, 11, 1813-1823.   DOI
22 A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, "Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge Carriers in Organic-inorganic Tri-halide Perovskites", Nat. Phys., 2015, 11, 582-587.   DOI
23 L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, J. Fu, Z. Xiong, X. Li, X. Tang, Z. Zang, S. Zhang, L. Sun, and M. Li, "Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS", ACS Appl. Mater. Interfaces, 2017, 9, 43902-43909.   DOI
24 R. Singh, S. Sandhu, H. Yadav, and J. J. Lee, "Stable Triple-Cation (Cs(+)-MA(+)-FA(+)) Perovskite Powder Formation under Ambient Conditions for Hysteresis-Free High-Efficiency Solar Cells", ACS Appl. Mater. Interfaces, 2019, 11, 29941-29949.   DOI
25 H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead Iodide Perovskite Sensitized All-solid-state Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", Sci. Rep., 2012, 2, 591.   DOI
26 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", Science, 2012, 338, 643-647.   DOI
27 https://www.nrel.gov/pv/cell-efficiency.html (Accessed April 26, 2022).