Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.116

Study on the Manufacturing Process and Characterization of Polyimide Non-woven Filter  

Sur, Young-sek (Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Hyoun-woo (Department of Material Science and Engineering, Hanyang University)
Min, Jae-Ho (PI Advanced Materials)
Lee, Byoung-Min (Dissol. Co.)
Jeon, Seung-han (Jeonsan Textile Co.)
Oh, Jung-teak (FITI)
Park, No-hyung (Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Publication Information
Textile Science and Engineering / v.59, no.2, 2022 , pp. 116-122 More about this Journal
Abstract
In this study, Polyimide (PI) fiber and non-woven fabric were fabricated for the manufacture of PI fiber high-temperature filter. The PI fiber was fabricated in two steps, and poly(amic acid) (PAA) could be manufactured by polymerizing 4,4'-oxydianiline (ODA) as an aromatic amine-based monomer and pyromellitic dianhydride (PMDA) as a solvent with N,N-dimethylacetamide (DMAc). PAA fibers were fabricated by wet spinning, PI fibers were manufactured by imidizing PAA fibers, and the properties of non-woven fabrics were investigated. To confirm the degree of imidization, various tests such as FT-IR analysis and shrinkage, heat resistance, deterioration analysis, maximum operating temperature, chemical resistance and dust collection efficiency were also performed.
Keywords
polyimide (PI); imidization; poly(amic acid) (PAA); non-woven fibric; filter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X.-L. Wang, Y.-F. Li, C.-L. Gong, T. Ma, and F.-C. Yang, "Synthesis and Properties of New Pyridine-bridged Poly(ether-imide)s Based on 4-(4-trifluoromethylphenyl)-2,6-bis[4-(4-aminophenoxy)phenyl]pyridine", J. Fluorine Chem., 2008, 129, 56-63.   DOI
2 H. B. Xiang, Z. Huang, L. Q. Liu, L. Chen, J. Zhu, Z. M. Hu, and J. R. Yu, "Structure and Properties of Polyimide (BTDATDI/MDI co-polyimide) Fibers Obtained by Wet-spinning", Macromol. Res., 2011, 19, 645-653.   DOI
3 C. H. Ju, J. C. Kim, and J. H. Chang, "Synthesis and Characterization of Colorless Polyimide Nanocomposite Films", J. Appl. Polym. Sci., 2007, 106, 4192-4201.   DOI
4 G. W. Meyer, S. J. Pak, Y. J. Lee, and J. E. McGrath, "New High-performance Thermosetting Polymer Matrix Material Systems", J. Polym., 1995, 36, 2303-2309.   DOI
5 J.-H. Chang, K. M. Park, S.-M. Lee, and J. B. Oh, "Two-step Thermal Conversion from Poly(amic acid) to Polybenzoxazole via Polyimide: Their Thermal and Mechanical Properties", J. Polym. Sci., Part B: Polym. Phys., 2000, 38, 2537-2545.   DOI
6 X. Fang, Z. Wang, Z. Yang, L. Gao, Q. Li, and M. Ding, "Novel Polyimides Derived from 2,3,3',4'-Benzophenonetetracarboxylic Dianhydride", J. Polym., 2003, 44, 2641-2646.   DOI
7 K. S. Yang, D. D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, "Preparation of Carbon Fiber Web from Electrostatic Spinning of PMDA-ODA Poly(amic acid) Solution", J. Carbon, 2003, 41, 2039-2046.   DOI
8 S. K. Park and R. J. Farris, "Dry-jet Wet Spinning of Aromatic Polyamic Acid Fiber Using Chemical Imidization", J. Polym., 2001, 42, 10087-10093.   DOI
9 H. Li, J. Liu, K. Wang, L. Fan, and S. Yang, "Synthesis and Characterization of Novel Fluorinated Polyimides Derived from 4,40-[2,2,2-trifluoro-1-(3,5-ditrifluoromethylphenyl) ethylidene]diphthalic Anhydride and Aromatic Diamines", J. Polym., 2006, 47, 1443-1450.   DOI
10 D.-J. Liaw, C.-C. Huang, and W.-H. Chen, "Color Lightness and Highly Organosoluble Fluorinated Polyamides, Polyimides and Poly(amide-imide)s Based on Noncoplanar 2,2'-dimethyl4,4'-biphenylene Units", J. Polym., 2006, 47, 2337-2348.   DOI
11 Q. H. Zhang, M. Dai, M. X. Ding, D. J. Chen, and L. X. Gao, "Mechanical Properties of BPDA-ODA Polyimide Fibers", Eur. Polym. J., 2004, 40, 2487-2493.   DOI
12 W. M. Edwards, U.S. Patent, 3,179,614 (1965).
13 R. S. Irwin, U.S. Patent, 3,415,782 (1968).
14 W. Xu, Y. Su, M. Shang, X. Lu, and Q. Lu, "Rapid Synthesis of Polyimide Precursors by Solution Polymerization Using Continuous-flow Microreactors", Chem. Eng. J., 2020, 397, 125361.   DOI
15 T. E. Snkhanova, Y. G. Baklagina, V. V. Kudryavtsev, A. Maricheva, and F. Lednicky, "Morphology, Deformation and Failure Behaviour of Homo- and Copolyimide Fibres: 1. Fibres from 4,4'-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl)-pyrimidine (2,5PRM)", J. Polym., 1999, 40, 6265-6276.   DOI
16 T. Kaneda, T. Katsur, K. Nakagawa, H. Makino, and M. Horio, "High-strength-high-modulus Polyimide Fibers I. One-Step Synthesis of Spinnable Polyimides", J. Appl. Polym., 1986, 32, 3133-3149.   DOI
17 K. Nagaoka, U.S. Patent, 4,448,957 (1984).
18 F. Chen, X. Peng, T. Li, S. Chen, X.-F. Wu, D. H. Reneker, and H. Hou, "Mechanical Characterization of Single High-strength Electrospun Polyimide Nanofibres", J. Phys. D: Appl. Phys., 2008, 41, 025308.   DOI
19 R. S. Irwin and W. Sweeny, "Polyimide Fibers", J. Polym. Sci., 1967, 19, 41-48.
20 K. Kim and M. Ree, "Isomeric Compositions in Amide Acids and Poly(amic acid)s Derived from 1-(Trifluoromethyl)-2,3,5,6-Benzenetetracarboxylic Dianhydride", J. Polym. Sci., 1998, 36, 1755-1765.   DOI
21 J. H. Chang and K. M. Park, "Thermal Cyclization of the Poly(amic acid): Thermal, Mechanical, and Morphological Properties", Eur. Polym. J., 2000, 36, 2185-2191.   DOI
22 X. Zeng, J. Hu, J. Zhao, Y. Hang, and D. Pan, "Investigating the Jet Stretch in the Wet Spinning of PAN Fiber", J. Appl. Polym., 2007, 106, 2267-2273.   DOI
23 H. S. Jin, J. C. Kim, and J. H. Chang, "Synthesis and Characterization of Colorless Polyimide Nanocomposite Films Containing Pendant Trifluoromethyl Groups", Macromol. Res., 2008, 16, 503-509.   DOI
24 J. Yin, Y.-F. Ye, L. Li, Y.-L. Zhang, Y. Huang, and Z.-G. Wang, "Study on the Preparation and Properties of Copolyimides Based on Hexafluoroisopropylidene Bis(3,4-phthalic anhydride) and 1,12-di(4-aminophenoxy)dodecane", Eur. Polym. J., 1999, 35, 1367-1373.   DOI