Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.361

Evaluation of Field Emission Characteristics Using Graphene Fiber  

Lee, Eunsong (Department of Organic and Nano Engineering, Hanyang University)
Eom, Wonsik (Department of Organic and Nano Engineering, Hanyang University)
Kim, Young Bae (AweXome Ray Inc.)
Jeong, Keunsoo (AweXome Ray Inc.)
Gihm, Se Hoon (AweXome Ray Inc.)
Han, Tae Hee (Department of Organic and Nano Engineering, Hanyang University)
Publication Information
Textile Science and Engineering / v.58, no.6, 2021 , pp. 361-367 More about this Journal
Abstract
We fabricated reduced graphene oxide fiber through wet spinning and chemically reduction method. We observed the reduction of graphene oxide by using Raman spectroscopy and X-ray photoelectron spectroscopy. The mechanical and electrical properties of reduced graphene oxide fiber were also measured and both properties were improved by reduction of graphene oxide fiber. We applied the reduced graphene oxide fiber to electrode for the electron emission. The emission current was 1.0 mA and the field enhancement was 4.97×103. It shows that the reduced graphene oxide fiber would be applicable as a material for electron emission.
Keywords
graphene fiber; electron emission; electron emitter; wet spinning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, "Hydrazine-reduction of Graphite- and Graphene Oxide", Carbon, 2011, 49, 3019-3023.   DOI
2 S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 2010, 48, 4466-4474.   DOI
3 Z. Xu and C. Gao, "Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres", Nat. Commun., 2011, 2, 571.   DOI
4 L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, "Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods", J. Electron. Spectrosc. Relat. Phenom., 2014, 195, 145-154.   DOI
5 C. Li, X. Zhou, F. Zhai, Z. Li, F. Yao, R. Qiao, K. Chen, M. T. Cole, D. Yu, Z. Sun, K. Liu, and Q. Dai, "Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency", Adv. Mater., 2017, 29, 1701580.   DOI
6 N. de Jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, "High Brightness Electron Beam from a Multi-walled Carbon Nanotube", Nature, 2002, 420, 393-395.   DOI
7 I. Kunadian, R. Andrews, D. Qian, and M. Pinar Menguc, "Growth Kinetics of MWCNTs Synthesized by a Continuous-feed CVD Method", Carbon, 2009, 47, 384-395.   DOI
8 W. Eom, S. H. Lee, H. Shin, W. Jeong, K. H. Koh, and T. H. Han, "Microstructure-Controlled Polyacrylonitrile/Graphene Fibers over 1 Gigapascal Strength", ACS Nano, 2021, 15, 13055-13064.   DOI
9 G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, "Highly Thermally Conductive and Mechanically Strong Graphene Fibers", Science, 2015, 349, 1083-1087.   DOI
10 D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, "Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-ray Photoelectron and Micro-raman Spectroscopy.", Carbon, 2009, 47, 145-152.   DOI
11 J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, "Graphene Oxide Liquid Crystals", Angewandte Chemie, 2011, 123, 3099-3103.   DOI
12 Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun, Y. Xu, X. Ren, C. Jin, P. Xu, M. Wang, and C. Gao, "Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering", Adv. Mater., 2016, 28, 6449-6456.   DOI
13 K. Krishnamoorthy, M. Veerapandian, K. Yun, and S. J. Kim, "The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation", Carbon, 2013, 53, 38-49.   DOI
14 J.-M. Bonard, H. Kind, T. Stockli, and L.-O. Nilsson, "Field Emission from Carbon Nanotubes: the First Five Years", Solid.State Electron., 2001, 45, 893-914.   DOI
15 G. S. Bocharov and A. V. Eletskii, "Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters", Nanomaterials, 2013, 3, 393-442.   DOI
16 S. Iijima, "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58.   DOI
17 J. Zhang, J. Tang, G. Yang, Q. Qiu, L.-C. Qin, and O. Zhou, "Efficient Fabrication of Carbon Nanotube Point Electron Sources by Dielectrophoresis", Adv. Mater., 2004, 16, 1219-1222.   DOI
18 T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, "X-ray Generation Using Carbon-nanofiber-based Flexible Field Emitters", Appl. Phys. Lett., 2006, 88, 103105.   DOI
19 W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, "Synthesis of Graphene and Its Applications: A Review", Crit. Rev. Solid State Mater. Sci., 2010, 35, 52-71.   DOI
20 W. Eom, E. Lee, S. H. Lee, T. H. Sung, A. J. Clancy, W. J. Lee, and T. H. Han, "Carbon Nanotube-reduced Graphene Oxide Fiber with High Torsional Strength from Rheological Hierarchy Control", Nat. Commun., 2021, 12, 396.   DOI
21 W. Song, I. A. Kinloch, and A. H. Windle, "Nematic Liquid Crystallinity of Multiwall Carbon Nanotubes", Science, 2003, 302, 1363-1363.   DOI
22 H. Park, K. H. Lee, Y. B. Kim, S. B. Ambade, S. H. Noh, W. Eom, J. Y. Hwang, W. J. Lee, J. Huang, and T. H. Han, "Dynamic Assembly of Liquid Crystalline Graphene Oxide Gel Fibers for Ion Transport", Sci. Adv., 2018, 4, eaau2104.   DOI
23 D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 2008, 3, 101-105.   DOI
24 S. Rattana, Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, and P. Limsuwan, "Preparation and Characterization of Graphene Oxide Nanosheets", Procedia Engineering, 2012, 32, 759-764.   DOI
25 V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, and M. Pasquali, "Phase Behavior and Rheology of SWNTs in Superacids", Macromolecules, 2004, 37, 154-160.   DOI
26 Y. Li, H. Zhu, S. Zhu, J. Wan, Z. Liu, O. Vaaland, S. Lacey, Z. Fang, H. Dai, T. Li, and L. Hu, "Hybridizing Wood Cellulose and Graphene Oxide Toward High-performance Fibers", NPG Asia Materials, 2015, 7, e150.   DOI
27 W. Eom, H. Park, S. H. Noh, K. H. Koh, K. Lee, W. J. Lee, and T. H. Han, "Strengthening and Stiffening Graphene Oxide Fiber with Trivalent Metal Ion Binders", Particle & Particle Systems Characterization, 2017, 34, 1600401.   DOI
28 M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, and J. M. D. Tascon, "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions", The Journal of Physical Chemistry C, 2010, 114, 6426-6432.   DOI
29 P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma, Z. Wang, S. Liu, and C. Gao, "Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning", Adv. Funct. Mater., 2020, 30, 2006584.   DOI
30 J. D. Carey, R. C. Smith, and S. R. P. Silva, "Carbon Based Electronic Materials: Applications in Electron Field Emission", J. Mater. Sci.: Mate. Electron., 2006, 17, 405-412.   DOI
31 K. Dave, K. H. Park, and M. Dhayal, "Two-step Process for Programmable Removal of Oxygen Functionalities of Graphene Oxide: Functional, Structural and Electrical Characteristics", RSC Adv., 2015, 5, 95657-95665.   DOI
32 S.-J. Choi, S.-J. Kim, and I.-D. Kim, "Ultrafast Optical Reduction of Graphene Oxide Sheets on Colorless Polyimide Film for Wearable Chemical Sensors", NPG Asia Materials, 2016, 8, e315.   DOI
33 S. Jin, Q. Gao, X. Zeng, R. Zhang, K. Liu, X. Shao, and M. Jin, "Effects of Reduction Methods on the Structure and Thermal Conductivity of Free-standing Reduced Graphene Oxide Films", Diamond Relat. Mater., 2015, 58, 54-61.   DOI