Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.305

Preparation and Characterization of PET Coating Yarns Filled with Inorganic Particle/Polyurethane by Twin-screw Melt Compounder  

Yu, Sung-Uk (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center)
Lee, Gi-Bong (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center)
Ahn, Ji-Hoon (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center)
Choi, Joo-Hwan (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center)
Publication Information
Textile Science and Engineering / v.58, no.6, 2021 , pp. 305-312 More about this Journal
Abstract
This study investigates the use of inorganic fillers (CaCO3, ZnO, ZrO2, and TiO2) with thermoplastic polyurethane (TPU) as polyethylene terephthalate (PET) coating yarns to improve their mechanical properties. TPU is the most widely used coating material for thermal melting because of its excellent mechanical properties, functionality, and processability. The mechanical properties (e.g., tensile strength and tensile strain) and thermal properties of prepared TPU compounds were investigated with different inorganic filler contents. TPU resin was melt-mixed using a twin-screw extruder for uniform mixing by filler type and inorganic particle concetration. The core PET yarns were melt-coated without thermal decomposition at approximately 200 ℃. The properties of the inorganic filler/TPU compound were analyzed by a universal testing machine, Fourier-transform infrared spectrometer, differential scanning calorimeter, and dynamic mechanical analysis. The dispersibility of inorganic fillers (ZnO and TiO2) in the TPUs was better than that of CaCO3 and ZrO2. The mechanical properties, thermal properties, and scanning electron microscopy images are ranked in the following order: TiO2 > ZnO > ZrO2 > CaCO3.
Keywords
TPU; hotmelt resin; coating yarn; extrusion; thermal properties; twin-screw extruder;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. S. Choi and J. J. Park, "Properties of EMNC according to Addition Contents Variation for Nanosilica (1)-For Thermal Properties", J. Korean Institute of Electr. Electron. Mater. Eng., 2012, 25, 798-804.   DOI
2 K. M. Shahil and A. A. Balandin, "Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials", Solid State Commun., 2012, 152, 1331-1340.   DOI
3 H. D. Park, Korea Pat., 10-2018-0002184 (2018).
4 J. Choi, S. Yu, S. Yang, and M. Cho, "The Glass Transition and Thermoelastic Behavior of Epoxy-based Nanocomposites: A Molecular Dynamics Study", Polymer, 2011, 52, 5197-5203.   DOI
5 A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, "Mechanical Properties of PLA Composites with Man-made Cellulose and Abaca Fibres", Compos. Part A: Appl. Sci. Manuf., 2009, 40, 404-412.   DOI
6 S. Mahalingam, S. Homer-vanniasinkam, and M. Edirisinghe, "Novel Pressurised Gyration Device for Making Core-sheath Polymer Fibres", Mater. Des., 2019, 178, 107846.   DOI
7 J. Won, M. A. Said, and A. F. M. Seyam, "Development of UV Protective Sheath for High Performance Fibers for High Altitude Applications", Fiber. Polym., 2013, 14, 647-652.   DOI
8 M. M. Rahman, "Polyurethane/Zinc Oxide (PU/ZnO) Composite-Synthesis, Protective Property and Application", Polymers, 2020, 12, 1535.   DOI
9 S. Samimi Gharaie, S. Habibi, and H. Nazockdast, "Fabrication and Characterization of Chitosan/gelatin/thermoplastic Polyurethane Blend Nanofibers", J. Text. Fibrous Mater., 2018, 1, 2515221118769324.
10 A. Leon, P. Reuquen, C. Garin, R. Segura, P. Vargas, P. Zapata, and P. A. Orihuela, "FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-methoxyestradiol", Appl. Sci., 2017, 7, 49.   DOI
11 Y. C. Han, D. H. Kim, K. S. Oh, H. J. Shin, J. H. Yang, and H. M. Jeong, "Effect of Polyethylene Glycol Molecular Weight and NCO Index on Properties of the Hydrophilic Reactive Hotmelt Polyurethane Adhesives", Text. Coloration and Finishing, 2018, 30, 90-97.   DOI
12 F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer, and K. I. Winey, "An Infiltration Method for Preparing Single-wall Nanotube/Epoxy Composites with Improved Thermal Conductivity", J. Polym. Sci. B Polym. Phys., 2006, 44, 1513-1519.   DOI
13 H. C. Madhusudhana, S. N. Shobhadevi, B. M. Nagabhushana, B. V. Chaluvaraju, M. V. Murugendrappa, R. Hari Krishna, H. Nagabhushana, and N. R. Radeep, "Effect of Fuels on Conductivity, Dielectric and Humidity Sensing Properties of ZrO2 Nanocrystals Prepared by Low Temperature Solution Combustion Method", J. Asian Ceram. Soc., 2016, 4, 309-318.   DOI
14 J. Xu, K. M. Razeeb, and S. Roy, "Thermal Properties of Single Walled Carbon Nanotube-silicone Nanocomposites", J. Polym. Sci. B Polym. Phys., 2008, 46, 1845-1852.   DOI
15 S. J. Kim, E. H. Lee, K. Heo, and H. A. Kim, "Study on Manufacturing Technology of Coating Yarns for Awning Fabrics", Text. Coloration and Finishing, 2015, 27, 35-49.   DOI
16 M. Wilson, M. A. Williams, D. S. Jones, and G. P. Andrews, "Hot-melt Extrusion Technology and Pharmaceutical Application", Therapeutic Delivery, 2012, 3, 787-797.   DOI
17 N. Wada, N. Horiuchi, M. Nakamura, K. Nozaki, A. Nagai, and K. Yamashita, "Controlled Crystallization of Calcium Carbonate via Cooperation of Polyaspartic Acid and Polylysine under Double-diffusion Conditions in Agar Hydrogels", ACS Omega, 2018, 3, 16681-16692.   DOI
18 G. Nagaraju, Udayabhanu, Shivaraj, S. A. Prashanth, M. Shastri, K. V. Yathish, C. Anupama, and D. Rangappa, "Electrochemical Heavy Metal Detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag-ZnO Nanomaterial", Mater. Res. Bull., 2017, 94, 54-63.   DOI
19 C. D. Han and D. Rao, "Studies on Wire Coating Extrusion. 1. Rheology of Wire Coating Extrusion", Polym. Eng. Sci., 1978, 18, 1019-1029.   DOI
20 V. Betingyte, K. Zukiene, V. Jankauskaite, D. Milasiene, K.V. Mickus, and A. Gulbiniene, "Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone) Based Thermoplastic Polyurethane", Mater. Sci., 2012, 18, 243-249.
21 L. van der Werff, I. L. Kyratzis, A. Robinson, R. Cranston, G. Peeters, M. O'Shea, and L. Nichols, "Thermochromic Composite Fibres Containing Liquid Crystals Formed via Melt Extrusion", J. Mater. Sci., 2013, 48, 5005-5011.   DOI
22 A. A. Leal, J. C. Veeramachaneni, F. A. Reifler, M. Amberg, D. Stapf, G. A. Barandun, D. Hegemann, and R. Hufenus, "Novel Approach for the Development of Ultra-light, Fully-thermoplastic Composites", Mater. Des., 2016, 93, 334-342.   DOI
23 S. Lee and H. Kim, "A Review on the Screw Configuration of Intermeshing Co-rotating Twin Screw Extruder", Korean Chem. Eng. Res., 2021, 59, 305-315.   DOI
24 J. Ganster and H. P. Fink, "Novel Cellulose Fibre Reinforced Thermoplastic Materials", Cellulose, 2006, 13, 271-280.   DOI
25 B. Biswas, N. R. Bandyopadhyay, N. Mukherjee, and A. Sinha, "Mechanical Behaviour of Jute/ZrO2 Based Polyester Composites at Microstructural Scale", Fiber. Polym., 2021, 22, 1731-1742.   DOI
26 X. Chen, W. Wang, S. Li, Y. Qian, and C. Jiao, "Synthesis of TPU/TiO2 Nanocomposites by Molten Blending Method", J. Thermal Analysis and Calorimetry, 2018, 132, 793-803.   DOI
27 S.-H. Lee, "Development of Eco-friendly Woven Floor Mat with High Resilience II-characterization of TPU Coating Yarn and Floor Mat", Fashion Text. Res. J., 2012, 14, 635-640.   DOI