Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.281

Principle of Ultrasonic Washing and Optimal Washing Conditions  

Hwang, Nawon (Department of Clothing and Textiles, Kyungpook National University)
Hwang, Sosan (Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University)
Chung, Haewon (Department of Clothing and Textiles, Inha University)
Shim, Sang Eun (Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University)
Publication Information
Textile Science and Engineering / v.58, no.6, 2021 , pp. 281-289 More about this Journal
Abstract
Ultrasound produces cavitation bubbles and microstreams when generated in water to clean dirty laundry without wrinkling. This study examined the conditions for the effective ultrasonic washing of fabrics. The ultrasonic power, temperature, washing time, and liquor ratio were varied, and an oily soiled cloth was used to evaluate the detergency. The detergency of ultrasonic washing increased as the ultrasonic intensity and temperature increased from 2.7 mV to 5.1 mV, and 25 ℃ to 60 ℃, respectively. The detergency increased from 10 min to 20 min, but decreased after 40 min. The longer the washing time, the greater the soil redeposition. The liquor ratio only affected the detergency at an ultrasonic intensity of over 4.3 mV. The detergency also increased with the liquor ratio. Therefore, for effective ultrasonic washing, increasing the ultrasonic intensity is more effective than increasing the temperature. Moreover, the washing time should not be too long.
Keywords
ultrasound; ultrasonics; cavitation bubbles; micro-streaming; detergency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. G. Cutler and R. C. Davis in "Detergency: Theory and Test Methods", (M. Dekker Ed.), NY and Basel, 1972, pp.260-263.
2 S. Awad, "Ultrasonic Cavitations and Precision Cleaning," Precision Cleaning Magazine, Witter Pub. Co. Inc., NJ, 1996, pp.12-17.
3 J. R. Hesson, "Fundamentals of Ultrasonic Cleaning", HESSONIC, Washington, UT, USA, 2003, pp.6-7.
4 R. Peila, G. A. Grande, M. Giansetti, S. Rehman, S. Sicardi, and G. Rovero, "Washing Off Intensification of Cotton and Wool Fabrics By Ultrasounds", Ultrason. Sonochem., 2015, 23, 324-332.   DOI
5 B. Niemczewski, "Cavitation Intensity of Water under Practical Ultrasonic Cleaning Conditions", Ultrason. Sonochem., 2014, 21, 354-359.   DOI
6 J. Choi, T. H. Kim, H. Y. Kim, and W. Kim, "Ultrasonic Washing of Textiles", Ultrason. Sonochem., 2016, 29, 563-567.   DOI
7 http://www.organic-chemistry.org/topics/sonochemistry.shtm (Accessed October 6, 2021).
8 T. J. Mason, "Ultrasound in Synthetic Organic Chemistry", Chem. Soc. Rev., 1997, 26, 443-451.   DOI
9 L. Azar, "Cavitation in Ultrasonic Cleaning and Cell Disruption", Controlled Environments, 2009, February, 14-17.
10 J. Vetrimurugan, G. Michael, and L. Terry, "Effect of Temperature and Frequency on Removal of Nano-dimensional Contaminants", Int. J. Innovative Res. Sci. Eng. Technol., 2014, 3, 8587-8595.
11 B. Kanegsberg and E. Kanegsberg, "Handbook for Critical Cleaning: Cleaning Agents and Systems", CRC Press, 2011, pp.269-280.
12 https://techblog.ctgclean.com/2011/12/ultrsonics-number-andsize-of-cavitation-bubbles/ (Accessed October 6, 2021).
13 S. Abbas, K. Hayat, E. Karangwa, M. Bashari, and X. Zhang, "An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions", Food Eng. Rev., 2013, 5, 139-157.   DOI
14 V. S. Moholkar and M. M. C. G. Warmoeskerken, "Investigations in Mass Transfer Enhancement in Textiles with Ultrasound", Chem. Eng. Sci., 2004, 59, 299-311.   DOI
15 K. Gotoh, K. Harayama, and K. Handa, "Combination Effect of Ultra Sound and Shake as a Mechanical Action for Textile Cleaning", Ultrason. Sonochem., 2015, 22, 412-421.   DOI
16 S. Perincek, A. E. Uzgur, K. Duran, A. Dogan, A. E. Korlu, and I. M. Bahtiyari, "Design Parameter Investigation of Industrial Size Ultrasound Textile Treatment Bath", Ultrason. Sonochem., 2009, 16, 184-189.   DOI
17 V. S. Moholkar and M. M. C. G. Warmoeskerken, "Mechanistic Aspects and Optimization of Ultrasonic Washing", AATCC Rev., 2002, 2, 34-37.
18 B. Niemczewski, "Influence of Concentration of Substances Used in Ultrasonic Cleaning in Alkaline Solutions on Cavitation Intensity", Ultrason. Sonochem., 2009, 16, 402-407.   DOI
19 K. Gotoh and K. Harayama, "Application of Ultrasound to Textiles Washing in Aqueous Solutions", Ultrason. Sonochem., 2013, 20, 747-753.   DOI
20 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950025362.pdf (Accessed October 6, 2021).
21 W. Kim, T. H. Kim, J. Choi, and H. Y. Kim, "Mechanism of Particle Removal by Megasonic Waves", Appl. Phys. Lett., 2009, 94, 081908/1-081908/3.
22 S. R. Kim, "The Science of Detergent and Laundry", Gyomoonsa, Paju, Korea, 1988, pp.134-171.
23 G. V. Datar, P. Banks-Lee, and P. L. Grady, "Acoustical Characteristics of Fabrics in High-intensity Ultrasound", Appl. Acoust., 1996, 48, 33-45.   DOI
24 J. A. Gallego-Juarez, E. Riera, V. Acosta, G. Rodriguez, and A. Blanco, "Ultrasonic System for Continuous Washing of Textiles in Liquid Layers", Ultrason. Sonochem., 2010, 17, 234-238.   DOI
25 M. M. C. G. Warmoeskerken, P. Van der Vlist, V. S. Moholkar, and V. A. Nierstrasz, "Laundry Process Intensification by Ultrasound", Colloids Surf. A: Physicochem. Eng. Asp., 2002, 210, 277-285.   DOI
26 Blackstone-ney Ultrasonics, "Fundamentals of Ultrasonic & Megasonic Cleaning", Process Cleaning Magazine, Gardner Publications, Inc., US, 2009, pp.1-6.