Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.267

SWNT Coated PET Fabric Heaters with Stable Electrothermal Response from CMC/SWNT Conductive Network  

Kang, Dong Jun (Department of Organic and Nano Engineering, Hanyang University)
Shin, Hwansoo (Department of Organic and Nano Engineering, Hanyang University)
Lee, Hak Bong (Department of Organic and Nano Engineering, Hanyang University)
Jeong, Woojae (Department of Organic and Nano Engineering, Hanyang University)
Lee, Hyeonhoo (Department of Organic and Nano Engineering, Hanyang University)
Han, Tae Hee (Department of Organic and Nano Engineering, Hanyang University)
Publication Information
Textile Science and Engineering / v.58, no.5, 2021 , pp. 267-273 More about this Journal
Abstract
Single-walled carbon nanotubes (SWNTs) are effectively dispersed in a water medium using carboxymethyl cellulose (CMC) as a dispersant and coated onto polyethylene terephthalate (PET) fabric via a dip-coating process. According to the weight percent of the CMC to carbon nanotubes (CNTs), the coating evenness on the PET fabric surface, dispersibility, and the washing fastness of the SWNT dispersant were changed and evaluated using ultraviolet-visible (UV-Vis) spectrometry. At the optimized ratio between the CMC and SWNT, the coated PET fabric exhibited higher electrical conductivity with a more uniform resistance deviation value and a stable heating aspect in the infrared (IR) image, compared with the bare SWNT-coated fabric. A specific observation of the coated fabric surface revealed that the CMC/SWNT network formed on the fabric surface connects each fibril by adding a parallel conductive pathway for the applied electrical flow. In addition, this additive pathway can release the heat concentration, which grants the fabric heater heat stability. The proposed fabric heater shows stable performance during the bending test. After 1 hour of performing the ON/OFF test, 11.9 ℃/s of the heating rate shows no changes in the surface temperature. This study demonstrates a highly stable fabric heater for heating sheets and wearable heating garments.
Keywords
electrothermal materials; carbon nanotubes; wearable heating fabric; carboxymethylcellulose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. W. An, E. J. Gwak, K. Kim, Y. C. Kim, J. Jang, J. Y. Kim, and J. U. Park, "Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability", Nano Lett., 2016, 16, 471-478.   DOI
2 M. Zhao, D. Li, J. Huang, D. Wang, A. Mensah, and Q. Wei, "A Multifunctional and Highly Stretchable Electronic Device Based on Silver Nanowire/Wrap Yarn Composite for a Wearable Strain Sensor and Heater", J. Mater. Chem. C, 2019, 7, 13468-13476.   DOI
3 A. Muhulet, F. Miculescu, S. I. Voicu, F. Schutt, V. K. Thakur, and Y. K. Mishra, "Fundamentals and Scopes of Doped Carbon Nanotubes Towards Energy and Biosensing Applications", Mater. Today Energy, 2018, 9, 154-186.   DOI
4 K. L. Grosse, M. H. Bae, F. Lian, E. Pop, and W. P. King, "Nanoscale Joule Heating, Peltier Cooling and Current Crowding at Graphene-metal Contacts", Nat. Nanotechnol., 2011, 6, 287-290.   DOI
5 T. B. Song, Y. Chen, C. H. Chung, Y. M. Yang, B. Bob, H. S. Duan, G. Li, K. N. Tu, Y. Huang, and Y. Yang, "Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts", ACS Nano, 2014, 8, 2804-2811.   DOI
6 J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, E. S. Kim, S. J. Chae, T. Q. Huy, N. Van Luan, and Y. H. Lee, "Heat Dissipation of Transparent Graphene Defoggers", Adv. Funct. Mater., 2012, 22, 4819-4826.   DOI
7 X. Yao, S. C. Hawkins, and B. G. Falzon , "An Advanced Anti-icing/de-icing System Utilizing Highly Aligned Carbon Nanotube Webs", Carbon, 2018, 136, 130-138.   DOI
8 P. Liu, Y. Li, Y. Xu, L. Bao, L. Wang, J. Pan, Z. Zhang, X. Sun, and H. Peng, "Stretchable and Energy-Efficient Heating Carbon Nanotube Fiber by Designing a Hierarchically Helical Structure", Small, 2018, 14, 1702926.   DOI
9 Y. Jiang, Y. Wang, Y. K. Mishra, R. Adelung, and Y. Yang, "Stretchable SWNTs-ecoflex Composite as Variable-transmittance Skin for Ultrasensitive Strain Sensing", Adv. Mater. Technol., 2018, 3, 1800248.   DOI
10 P. Liu, L. Liu, K. Jiang, and S. Fan, "Carbon-Nanotube-Film Microheater on a Polyethylene Terephthalate Substrate and Its Application in Thermochromic Displays", Small, 2011, 7, 732-736.   DOI
11 W. Eom, E. Lee, S. H. Lee, T. H. Sung, A. J. Clancy, W. J. Lee, and T. H. Han, "Carbon Nanotube-reduced Graphene Oxide Fiber with High Torsional Strength from Rheological Hierarchy Control", Nat. Commun., 2021, 12, 396.   DOI
12 S.-L. Jia, H.-Z. Geng, L. Wang, Y. Tian, C.-X. Xu, P.-P. Shi, Z.-Z. Gu, X.-S. Yuan, L.-C. Jing, Z.-Y. Guo, and J. Kong, "Carbon Nanotube-based Flexible Electrothermal Film Heaters with a High Heating Rate", R. Soc. Open Sci., 2018, 5, 172072.   DOI
13 T. Zheng, G. Wang, N. Xu, C. Lu, Y. Qiao, D. Zhang, and X. Wang, "Preparation and Properties of Highly Electroconductive and Heat-Resistant CMC/Buckypaper/Epoxy Nanocomposites", Nanomaterials, 2018, 8, 969.   DOI
14 H. Nakajima, T. Morimoto, Y. Okigawa, T. Yamada, Y. Ikuta, K. Kawahara, H. Ago, and T. Okazaki, "Imaging of Local Structures Affecting Electrical Transport Properties of Large Graphene Sheets by Lock-in Thermography", Sci. Adv., 2019, 5, eaau3407.   DOI
15 P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, and S. Fan, "Fast High-temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display", Adv. Mater., 2009, 21, 3563-3566.   DOI
16 H.-S. Jang, S. K. Jeon, and S. H. Nahm, "The Manufacture of a Transparent Film Heater by Spinning Multi-walled Carbon Nanotubes", Carbon, 2011, 49, 111-116.   DOI
17 M. A. Aouraghe, F. Xu, X. Liu, and Y. Qiu, "Flexible, Quickly Responsive and Highly Efficient E-heating Carbon Nanotube Film", Compos. Sci. Technol., 2019, 183,107824.   DOI
18 H. Kim and S. Lee, "Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents", Polymers, 2019, 11, 928.   DOI
19 F. Loghin, A. Rivadeneyra, M. Becherer, P. Lugli, and M. Bobinger, "A Facile and Efficient Protocol for Preparing Residual-Free Single-Walled Carbon Nanotube Films for Stable Sensing Applications", Nanomaterials, 2019, 9, 471.   DOI
20 L. Jiang, L. Gao, and J. Sun, "Production of Aqueous Colloidal Dispersions of Carbon Nanotubes", J. Colloid Interface Sci., 2003, 260, 89-94.   DOI
21 S. Jiang, C. Liu, and S. Fan, "Efficient Natural-Convective Heat Transfer Properties of Carbon Nanotube Sheets and Their Roles on the Thermal Dissipation", ACS Appl. Mater. Interfaces, 2014, 6, 3075-3080.   DOI
22 P. Ilanchezhiyan, A. S. Zakirov, G. Mohan Kumar, Sh. U. Yuldashev, H. D. Cho, T. W. Kang, and A. T. Mamadalimov, "Highly Efficient CNT Functionalized Cotton Fabrics for Flexible/Wearable Heating Applications", RSC Adv., 2015, 5, 10697.   DOI
23 B. F. Monea, E. I. Ionete, S. I. Spiridon, D. Ion-Ebrasu, and E. Petre, "Carbon Nanotubes and Carbon Nanotube Structures Used for Temperature Measurement", Sensors, 2019, 19, 2464.   DOI
24 D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, "Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials", Small, 2011, 7, 3186-3192.   DOI