Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.106

Effect of the Lithiophilicity of the Li Host of a Carbon Nanotube Film on the Performance of Li Metal Battery  

Kim, Rayoung (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Gyosik (Department of Organic Materials and Fiber Engineering, Soongsil University)
Shin, Myunggyu (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Haejoo (Department of Organic Materials and Fiber Engineering, Soongsil University)
Song, Hyeonjun (Department of Organic Materials and Fiber Engineering, Soongsil University)
Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Textile Science and Engineering / v.58, no.2, 2021 , pp. 106-112 More about this Journal
Abstract
Lithium (Li) has gained attention as an anode material because of its high specific capacity (3860 mAh g-1) and high energy density. However, its commercialization is limited owing to the dendrite growth on the surface of the electrode, which causes several drawbacks, such as low cycling stability, and safety issues, such as short circuits due to the penetration of the separator. Li hosts with various structures have been studied to address these problems. A 3D-scaffold structured host effectively suppresses the Li dendrite growth and improves the electrode performance. Carbon nanotube (CNT) is a promising candidate material for a Li host owing to its high surface area and excellent electrical conductivity. However, the lithiophobicity of CNT makes it difficult to utilize CNT as a Li host. In this study, we tried to improve the lithiophilicity of CNT film by direct pre-lithiation method and studied the effect of lithiophilicity on the performance of Li metal battery. Li could be uniformly plated inside the lithiophilic CNT film in contrast to lithiophobic CNT film, where it was plated unevenly on the surface. This Li plating behavior was reflected in the performance of the full cell, in which LiFePO4 (LFP) was used as a cathode. The full cell (LFP ∥ lithiophilic CNT film) exhibited remarkable cyclability owing to uniform Li plating inside lithiophilic CNT film.
Keywords
Li-metal battery; lithium host; carbon nanotube; lithiophilicity; direct pre-lithiation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. W. Li, Y. Shi, Y. X. Weng, X. X. Li, J. Y. Li, C. J. Li, L. J. Wan, R. Wen, and Y. G. Guo, "A Flexible Solid Electrolyte Interphase Layer for Long-life Lithium Metal Anodes", Angewandte Chemie, 2018, 130, 1521-1525.   DOI
2 G. Huang, S. Chen, P. Guo, R. Tao, K. Jie, B. Liu, X. Zhang, J. Liang, and Y. Cao, "In situ Constructing Lithiophilic NiFx Nanosheets on Ni Foam Current Collector for Stable Lithium Metal Anode via a Succinct Fluorination Strategy", Chem. Eng. J., 2020, 395, 125122.   DOI
3 G. Yang, Y. Li, Y. Tong, J. Liu, S. Zhang, Z. Guan, B. Xu, Z. Wang, and L. Chen, "Lithium Plating and Stripping on Carbon Nanotube Sponge", Nano Letters, 2018, 19, 494-499.   DOI
4 Z. Sun, S. Jin, H. Jin, Z. Du, Y. Zhu, A. Cao, H. Ji, and L. J. Wan, "Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes", Adv. Mater., 2018, 30, 1800884.   DOI
5 D. Lin, Y. Liu, Z. Liang, H. Lee, J. Sun, H. Wang, K. Yan, J. Xie, and Y. Cui, "Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes", Nature Nanotechnol., 2016, 11, 626-632.
6 T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li, and Y. G. Guo, "Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes", Adv. Mater., 2017, 29, 1700389.   DOI
7 Y. Zhang, B. Liu, E. Hitz, W. Luo, Y. Yao, Y. Li, and H. Li, "A Carbon-based 3D Current Collector with Surface Protection for Li Metal Anode", Nano Research, 2017, 10, 1356-1365.
8 J. Lee, D. M. Lee, Y. K. Kim, H. S. Jeong, and S. M. Kim, "Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers", Small, 2017, 13, 1701131.   DOI
9 Y. S. Jeong, Master's Thesis, Soongsil University, 2012.
10 S. K. Cho, G. Y. Jung, K. H. Choi, J. Lee, J. Yoo, S. K. Kwak, and S. Y. Lee, "Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles", Nano Letters, 2019, 19, 5879-5884.   DOI
11 X. Shen, H. Ji, J. Liu, J. Zhou, C. Yan, and T. Qian, "Super Lithiophilic SEI Derived from Quinones Electrolyte to Guide li Uniform Deposition", Energy Storage Materials, 2020, 24, 426-431.   DOI
12 B. Liu, J. Zhang, and W. Xu, "Advancing Lithium Metal Batteries", Joule, 2018, 2, 833-845.
13 S. Huang, L. Tang, H. Najafabadi, S. Chen, and Z. Ren, "A Highly Flexible Semi-tubular Carbon Film for Stable Lithium Metal Anodes in High-performance Batteries", Nano Energy, 2017, 38, 504-509.   DOI
14 B. Dunn, H. Kamath, and J. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices", Science, 2011, 332, 928-935.   DOI
15 H. Kim, G. Jeong, Y. Kim, J. Kim, C. Park, and H. Sohn, "Metallic Anodes for Next Generation Secondary Batteries", Chem. Soc. Rev., 2013, 42, 9011-9034.   DOI
16 Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, and Y. Cui, "Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating", Proceedings of the National Academy of Sciences, 2016, 113, 2862-2867.   DOI
17 C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, and L. Hu, "Ultrafine Silver Nanoparticles for Seeded Lithium Deposition Toward Stable Lithium Metal Anode", Adv. Mater., 2017, 29, 1702714.   DOI
18 W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J. G. Zhang, "Lithium Metal Anodes for Rechargeable Batteries", Energy Environ. Sci., 2014, 7, 513-537.   DOI
19 Q. Li, S. Zhu, and Y. Lu, "3D Porous Cu Current Collector/Li-metal Composite Anode for Stable Lithium-metal Batteries", Adv. Funct. Mater., 2017, 27, 1606422.   DOI
20 A. Shellikeri, V. Watson, D. Adams, E. E. Kalu, J. A. Read, T. R. Jow, J. S. Zeng, and J. P. Zheng, "Investigation of Pre-lithiation in Graphite and Hard-carbon Anodes Using Different Lithium Source Structures", J. Electrochem. Soc., 2017, 164, A3914.   DOI
21 D. Lu, Y. Shao, T. Lozano, W. Bennett, G. Graff, B. Polzin, J. Zhang, M. Engelhard, N. Saenz, W. Henderson, P. Bhattacharya, J. Liu, and J. Xiao, "Failure Mechanism for Fast-charged Lithium Metal Batteries with Liquid Electrolytes", Adv. Energy Mater., 2015, 5, 1400993.   DOI
22 X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, "Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review", Chem. Rev., 2017, 117, 10403-10473.   DOI
23 Y. Liu, Q. Liu, L. Xin, Y.Liu, F. Yang, E. Stach, and J. Xie, "Making Li-metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction", Nature Energy, 2017, 2, 1-10.
24 S. Sheng, L. Sheng, L. Wang, N. Piao, and X. He, "Thickness Variation of Lithium Metal Anode with Cycling", J. Power Sources, 2020, 476, 228749.
25 H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, and J. Wang, "Recent Progress and Perspective on Lithium Metal Anode Protection", Energy Storage Materials, 2018, 14, 199-221.   DOI
26 S. Lee, H. Song, J. Y. Hwang, and Y. Jeong, "Directly-prelithiated Carbon Nanotube Film for High-performance Flexible Lithium-ion Battery Electrodes", Fiber. Polym., 2017, 18, 2334-2341.   DOI
27 H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, J. Zhang, J. Wang, and X. Tao, "Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium-sulfur Batteries", ACS Energy Letters, 2017, 2, 1711-1719.   DOI
28 M. Armand and J. Tarascon, "Building Better Batteries", Nature, 2008, 451, 652-657.   DOI
29 R. Zhang, N. W. Li, X. B. Cheng, Y. X. Yin, Q. Zhang, and Y. G. Guo, Advanced for Lithium Metal Anodes", Adv. Sci., 2017, 4, 1600445.   DOI
30 Z. Wang, Z. Wu, N. Bramnik, and S. Mitra, "Fabrication of High-performance Flexible Alkaline Batteries by Implementing Multiwalled Carbon Nanotubes and Copolymer Separator", Adv. Mater., 2014, 26, 970-976.   DOI
31 M. Schulz, V. Shanov, Z. Yin, and M. Cahay, "Nanotube Superfiber Materials : Science, Manufacturing, Commercialization", William Andrew, 2019.
32 S. L. H. Rebelo, A. Geudes, M. E. Szefczyk, A. M. Araujo, and C. Freire, "Progress in the Raman Spectra Analysis of Covalently Functionalized Multiwalled Carbon Nanotubes : Unraveling Disorder in Graphitic Materials", Phys. Chem. Chem. Phys., 2016, 18, 12784-12796.   DOI
33 C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, "Recent Advances in All-solid-state Rechargeable Lithium Batteries", Nano Energy, 2017, 33, 363-386.   DOI
34 A. Manthiram, X. Yu, and S. Wang, "Lithium Battery Chemistries Enabled by Solid-state Electrolytes", Nat. Rev. Mater., 2017, 2, 1-16.
35 J. Chen, A. Sanchez, E. Kazyak, A. Davis, and N. Dasgupta, "Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes", Nano Letters, 2020, 20, 3403-3410.   DOI
36 D. Lin, Y. Liu, and Y. Cui, "Reviving the Lithium Metal Anode for High-energy Batteries", Nature Nanotechnol., 2017, 12, 194-206.
37 L. Tao, A. Hu, Z. Yang, Z. Xu, C. Wall, A. Esker, Z. Zeng, and F. Lin, "Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting High-Performance Lithium Metal Anodes", Adv. Funct. Mater., 2020, 2000585.   DOI
38 F. Shen, F. Zhang, Y. Zheng, Z. Fan, Z. Li, Y. Xuan, B. Zhao, Z. Lin, X. Gui, X. Han, Y. Cheng, and C. Niu, "Direct Growth of 3D Host on Cu Foil for Stable Lithium Metal Anode", Energy Storage Materials, 2018, 13, 323-328.   DOI
39 X. Ke, Y. Liang, L. Ou, H. Liu, Y. Chen, W. Wu, Y. Cheng, Z. Guo, Y. Lai, P. Liu, and Z. Shi, "Surface Engineering of Commercial Ni Foams for Stable Li Metal Anodes", Energy Storage Materials, 2019, 23, 547-555.
40 S. Chi, Y. Liu, W. Song, L. Fan, and Q. Zhang, "Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-free Lithium Metal Anode", Adv. Funct. Mater., 2017, 27, 1700348.   DOI