Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.040

Research for Mechanical Properties of Wet Nonwoven Fabric Based on Recycled Carbon Fiber Using Cellulose Nanofibrils  

Youn, Chulmin (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Bae, Young Hwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Kim, Woo Sik (Fibrous Ceramics & Aerospace Materials Center, Korea Institute of Ceramic Engineering and Technology)
Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Publication Information
Textile Science and Engineering / v.58, no.1, 2021 , pp. 40-47 More about this Journal
Abstract
Carbon fiber is an advanced material widely used in high-tech industries because of its light weight, heat resistance, chemical resistance, excellent mechanical properties, and electrical and thermal conductivity. However, carbon fibers also have high production costs and limited disposal methods (e.g., landfills). Research is being conducted to address these problems through the recycling of carbon fibers. Among the representative recycled carbon fiber products, wet nonwoven fabrics have limitations in their mechanical properties because their structure simply consists of stacked microsized-diameter carbon fibers and a binder. In this study, the tensile strength was improved by adding cellulose nanofibrils (CNFs) during the manufacturing of wet nonwoven fabrics by mixing short-cut carbon fibers and a binder (short-cut PVA fibers). CNF bundles improve the mechanical properties by forming a complex structure via the crosslinking of carbon fibers and short PVA fibers. The tensile strength of nonwoven fabrics consisting of short carbon fibers and PVA fibers was determined to be 92 gf. On the other hand, the tensile strength of the nonwoven fabric with 10% CNF added to the binder increased by approximately 20 times to 1,808 gf. The composite with nanofiber was confirmed to be effective in forming a structure with high mechanical properties when fabricating microfiber-based nonwoven fabrics.
Keywords
carbon fiber; PVA short fiber; cellulose nanofibril; wet-laid nonwoven; mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Barnes, J. A. Jefcoat, E. M. Alberts, M. A. McKechnie, H. R. Peel, J. P. Buchanan, C. A. Weiss Jr, K. L. Klaus, L. C. Mimun, and C. M. Warner, "Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites", Polymers, 2019, 11, 1091.   DOI
2 A. Mandal and D. Chakrabarty, "Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and Its Characterization", Carbohydr. Polym., 2011, 86, 1291-1299.   DOI
3 J. I. Moran, V. A. Alvarez, V. P. Cyras, and A. Vazquez, "Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers", Cellulose, 2008, 15, 149-159.   DOI
4 Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, "Kinetics and Mechanism of Cellulose Pyrolysis", J. Phys. Chem. C, 2009, 113, 20097-20107.   DOI
5 H. G. Chae, B. A. Newcomb, P. V. Gulgunje, Y. Liu, K. K. Gupta, M. G. Kamath, K. M. Lyons, S. Ghoshal, C. Pramanik, and L. Giannuzzi, "High Strength and High Modulus Carbon Fibers", Carbon, 2015, 93, 81-87.   DOI
6 B. A. Newcomb, "Processing, Structure, and Properties of Carbon Fibers", Compos. Part A Appl. Sci. Manuf., 2016, 91, 262-282.   DOI
7 J. D. Buckley and D. D. Edie, "Carbon-carbon Materials and Composites", William Andrew, 1993.
8 K. Naito, Y. Tanaka, J. M. Yang, and Y. Kagawa, "Flexural Properties of PAN‐and Pitch‐based Carbon Fibers", J. Am. Ceram. Soc., 2009, 92, 186-192.   DOI
9 X. Xi and D. Chung, "Colossal Electric Permittivity Discovered in Polyacrylonitrile (PAN) Based Carbon Fiber, with Comparison of PAN-based and Pitch-based Carbon Fibers", Carbon, 2019, 145, 734-739.   DOI
10 Y. Huang and R. Young, "Effect of Fibre Microstructure Upon the Modulus of PAN-and Pitch-based Carbon Fibres", Carbon, 1995, 33, 97-107.   DOI
11 O. Paris, D. Loidl, and H. Peterlik, "Texture of PAN-and Pitch-based Carbon Fibers", Carbon, 2002, 40, 551-555.   DOI
12 S. Bennett, D. Johnson, and W. Johnson, "Strength-structure Relationships in PAN-based Carbon Fibres", J. Mater. Sci., 1983, 18, 3337-3347.   DOI
13 M. Chaudhry, A. Czekanski, and Z. Zhu, "Characterization of Carbon Nanotube Enhanced Interlaminar Fracture Toughness of Woven Carbon Fiber Reinforced Polymer Composites", Int. J. Mech. Sci., 2017, 131, 480-489.   DOI
14 G. Jiang, S. J. Pickering, E. H. Lester, T. Turner, K. Wong, and N. Warrior, "Characterisation of Carbon Fibres Recycled from Carbon Fibre/epoxy Resin Composites Using Supercritical npropanol", Compos. Sci. Technol., 2009, 69, 192-198.   DOI
15 W. Liu, H. Huang, H. Cheng, and Z. Liu, "CFRP Reclamation and Remanufacturing Based on a Closed-loop Recycling Process for Carbon Fibers Using Supercritical N-butanol", Fiber. Polym., 2020, 21, 604-618.   DOI
16 L. Altay, M. Atagur, O. Akyuz, Y. Seki, I. Sen, M. Sarikanat, and K. Sever, "Manufacturing of Recycled Carbon Fiber Reinforced Polypropylene Composites by High Speed Thermo‐kinetic Mixing for Lightweight Applications", Polym. Compos., 2018, 39, 3656-3665.   DOI
17 H. Ueda, A. Moriyama, H. Iwahashi, and H. Moritomi, "Organizational Issues for Disseminating Recycling Technologies of Carbon Fiber-reinforced Plastics in the Japanese Industrial Landscape", J. Mater. Cycles Waste Manag., 2020, pp.1-11.
18 H. Lee, C.-W. Choi, J.-W. Jin, M. Huh, S. Lee, and K.-W. Kang, "Homogenization-based Multiscale Analysis for Equivalent Mechanical Properties of Nonwoven Carbon-fiber Fabric Composites", J. Mech. Sci. Technol., 2019, 33, 4761-4770.   DOI
19 H. J. Choi, Y. H. Bae, H. H. Lee, and S. Y. Yeo, "Preparation and Characterization of Alginate-gelatin/silk Wet-laid Nonwoven Fabric", Textile Coloration and Finishing, 2020, 32, 57-64.   DOI
20 R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, "Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites", Chem. Soc. Rev., 2011, 40, 3941-3994.   DOI
21 H. Lee, S. B. A. Hamid, and S. Zain, "Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process", Sci. World J., 2014, 2014, 631013 .
22 D. Liu, X. Sun, H. Tian, S. Maiti, and Z. Ma, "Effects of Cellulose Nanofibrils on the Structure and Properties on PVA Nanocomposites", Cellulose, 2013, 20, 2981-2989.   DOI
23 Y. Xue, Z. Mou, and H. Xiao, "Nanocellulose as a Sustainable Biomass Material: Structure, Properties, Present Status and Future Prospects in Biomedical Applications", Nanoscale, 2017, 9, 14758-14781.   DOI
24 C. Chen, H. Wang, S. Li, L. Fang, and D. Li, "Reinforcement of Cellulose Nanofibers in Polyacrylamide Gels", Cellulose, 2017, 24, 5487-5493.   DOI
25 J. Zhang, T. Liu, Z. Liu, and Q. Wang, "Facile Fabrication of Tough Photocrosslinked Polyvinyl Alcohol Hydrogels with Cellulose Nanofibrils Reinforcement", Polymer, 2019, 173, 103-109.   DOI
26 J. Peng, T. Ellingham, R. Sabo, L.-S. Turng, and C. M. Clemons, "Short Cellulose Nanofibrils as Reinforcement in Polyvinyl Alcohol Fiber", Cellulose, 2014, 21, 4287-4298.   DOI
27 J. Yang, C.-R. Han, X.-M. Zhang, F. Xu, and R.-C. Sun, "Cellulose Nanocrystals Mechanical Reinforcement in Composite Hydrogels with Multiple Cross-links: Correlations Between Dissipation Properties and Deformation Mechanisms", Macromolecules, 2014, 47, 4077-4086.   DOI
28 T. Wang and L. T. Drzal, "Cellulose-nanofiber-reinforced Poly (lactic acid) Composites Prepared by a Water-based Approach", ACS Appl. Mater. Interfaces, 2012, 4, 5079-5085.   DOI
29 S.-H. Lee, Y. Teramoto, and T. Endo, "Cellulose Nanofiber-reinforced Polycaprolactone/polypropylene Hybrid Nanocomposite", Compos. Part A Appl. Sci. Manuf., 2011, 42, 151-156.   DOI
30 F. Safdari, P. J. Carreau, M. C. Heuzey, M. R. Kamal, and M. M. Sain, "Enhanced Properties of Poly(ethylene oxide)/cellulose Nanofiber Biocomposites", Cellulose 2017, 24, 755-767.   DOI