Browse > Article
http://dx.doi.org/10.12772/TSE.2020.57.315

Reconstituted Biodegradable Composites with Cellulose Structure  

Suh, Hyung Woo (Department of Fiber System Engineering, Dankook University)
Yoo, Chang Ha (Department of Fiber System Engineering, Dankook University)
Lee, Won Jun (Department of Fiber System Engineering, Dankook University)
Publication Information
Textile Science and Engineering / v.57, no.5, 2020 , pp. 315-322 More about this Journal
Abstract
Environmental issues have led to a growing demand for eco-friendly functional materials and their biodegradable ability. One of the best way to design eco-friendly materials is to utilize bio-mimetic process to mimic their physical structures and chemical characteristics of naturally abundant materials. Here we develop lignocellulose-based composites for sustainable biodegradable materials, which mimic natural cellulose structures. Briefly, biodegradable PCL and stiff CNC crystals replace amorphous hemicellulose and cellulose fibroin, respectively, with enhanced mechanical strength and their facile fabrication. Indeed, electro-spinning with various applied voltage aided to manufacture nano-web structure to obtain definitely increased surface area. Importantly, the control of voltage affected the formation of agglomerates with different taylor cone structure, which could be attributed to the balance between spinning rate and charged constituents. The CNC reinforcement increased the mechanical strength (up to 3 MPa), and PCL increased the degradablity (up to 20% after 24 hrs), which confirms their aforementioned advantages.
Keywords
lignocellulose; biodegradable; biomimetics; electrospinning; lignin; polycaprolactone; cellulose nanocrystals;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 L. G. Wei, Y. C. Ma, K. L. Li, J. L. Wang, and Y. C. Yu, "Lignocellulosic Microparticles Reconstituted from Legume Straw-1-Butyl-3-Methylimidazolium Chloride-Water Solution", Appl. Mech. Mater., 2012, 217-219, 993-996.   DOI
2 M. S. Nikolic and J. Djonlagic, "Synthesis and Characterization of Biodegradable Poly(butylene succinate-co-butylene adipate)s", Polym. Degrad. Stab., 2001, 74, 263-270.   DOI
3 Y. Chen, S. Zhou, and Q. Li, "Microstructure Design of Biodegradable Scaffold and Its Effect on Tissue Regeneration", Biomaterials, 2011, 32, 5003-5014.   DOI
4 J. P. Pires, A. S. Ramos, G. M. Miranda, G. L. de Souza, F. Fraga, C. M. N. Azevedo, R. A. Ligabue, J. E. A. de Lima, and R. V. Lourega, "Natural Freshwater Degradation of Polypropylene Blends with Additives of a Distinct Nature", Polym. Bull., https://doi.org/10.1007/s00289-020-03200-9 (2020).
5 A. P. C. Almeida J. P. Canejo, S. N. Fernandes, C. Echeverria, P. L. Almeida, and M. H. Godinho, "Cellulose‐Based Biomimetics and Their Applications", Adv. Mater., 2018, 30, 1703655.   DOI
6 L. Taiz and E. Zeiger in "Plant Physiology", Sinauer Associates, Massachusetts, 2010, pp.315-317.
7 A. Zoghlami and G. Paes, "Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis", Front Chem., 2019, 7, 874.   DOI
8 K. S. Park and H. Kim, "Properties of Polybenzoxazine Composites Reinforced with Cellulose Nanocrystals", Text. Sci. Eng., 2019, 56, 149-154.   DOI
9 E. C. Vigliani, "Carbon Disulphide Poisoning in Viscose Rayon Factories", Br. J. Ind. Med., 1954, 11, 235-244.
10 W. J. Lee, A. J. Clancy, E. Kontturi, A. Bismarck, and M. S. P. Shaffer, "Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers", ACS Appl. Mater. Interfaces, 2016, 8, 31500-31504.   DOI
11 D. Ko, S. H. Kim, C. H. Shin, C. R. Kim, Y. T. Lee, and J. Y. Kim, "Study on Bio-degradation of Cigarette Filter Rods with Filter Materials", J. Kor. Soc. Tob. Sci., 2005, 27, 75-82.
12 T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, "The Chemistry of Side Reactions and Byproduct Formation in the System NMMO/cellulose (Lyocell process)", Prog. Polym. Sci., 2001, 26, 1763-1837.   DOI
13 H. Wang, G. Gurau, and R. D. Rogers, "Ionic Liquid Processing of Cellulose", Chem. Soc. Rev., 2012, 41, 1519-1537.   DOI
14 L. Wang and A. J. Ryan in "Electrospinning for Tissue Regeneration", Woodhead Publishing, Cambridge, 2011, pp.3-33.
15 R. Protz, A. Lehmann, J. Ganster, and H. P. Fink, "Solubility and Spinnability of Cellulose-lignin Blends in Aqueous NMMO", Carbohydr. Polym., 2021, 251, 117027.
16 N. Byrne, R. De Silva, Y. Ma, H. Sixta, and M. Hummel, "Enhanced Stabilization of Cellulose-lignin Hybrid Filaments for Carbon Fiber Production", Cellulose, 2018, 25, 723-733.   DOI
17 H.-J. Jang, W.-J. Kim, and Y.-S. Chung, "Preparation and Characteristics of Cellulose Based Carbon Hollow Fibers Containing MWCNT", Text. Sci. Eng., 2016, 53, 24-31.   DOI
18 A. Saddawi, J. M. Jones, A. Williams, and M. A. Wojtowicz, "Kinetics of the Thermal Decomposition of Biomass", Energy Fuels., 2010, 24, 1274-1282.   DOI
19 C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, "Study on Morphology of Electrospun Poly(vinyl alcohol) Mats", Eur. Polym. J., 2005, 41, 423−432.   DOI
20 D. H. Reneker and A. L. Yarin, "Electrospinning Jets and Polymer Nanofibers", Polymer, 2008, 49, 2387-2425.   DOI
21 A. Hivechi, S. Hajir Bahrami, and R. A. Siegel, "Drug Release and bIodegradability of Electrospun Cellulose Nanocrystal Reinforced Polycaprolactone", Mater. Sci. Eng. C, 2019, 94, 929-937.   DOI
22 J. Li, Y. He, and Y. Inoue, "Study on Thermal and Mechanical Properties of Biodegradable Blends of Poly($\varepsilon$-caprolactone) and Lignin", Polym. J., 2001, 33, 336-343.   DOI
23 H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, "Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis", Fuel, 2007, 86, 1781-1788.   DOI
24 F. V. Ferreira, A. Dufresne, I. F. Pinheiro, D. H. S. Souza, R. F. Gouveia, L. H. I. Mei, and L. M. F. Lona, "How do Cellulose Nanocrystals Affect the Overall Properties of Biodegradable Polymer Nanocomposites: A Comprehensive Review", Eur. Polym. J., 2018, 108, 274-285.   DOI
25 S. Sen, S. Patila, and D. S. Argyropoulos, "Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review", Green Chem., 2015, 17, 4862-4887.   DOI
26 E. Diaz, I. Sandonis, and M. B. Valle, "In Vitro Degradation of Poly(caprolactone)/nHA Composites", J. Nanomater., 2014, 2014, 8, 802435.