Browse > Article
http://dx.doi.org/10.12772/TSE.2020.57.306

Micro-Flower NiCoMnO2 Superstructures Prepared by a Catalytic Chemical Oxidation for Supercapacitor Applications  

Cho, Young-Hun (Department of Organic Materials & Fiber Engineering, Jeonbuk National University)
Ko, Tae Hoon (Department of Organic Materials & Fiber Engineering, Jeonbuk National University)
Choi, Woong-Ki (Korea Institute of Carbon Convergence Technology)
Kuk, Yun-Su (Korea Institute of Carbon Convergence Technology)
Seo, Min-Kang (Korea Institute of Carbon Convergence Technology)
Kim, Byoung-Suhk (Department of Organic Materials & Fiber Engineering, Jeonbuk National University)
Publication Information
Textile Science and Engineering / v.57, no.5, 2020 , pp. 306-314 More about this Journal
Abstract
Herein, a facile method of catalytic chemical oxidation was reported to produce the micro-flower NiCoMnO2 superstructures. FE-SEM confirmed the uniform NiCoMnO2 flower-like morphologies with an averaged diameter of 1-2 ㎛, composed of the nanosheets with the thickness of 10 ± 2 nm, could provide the pathways for efficient and fast transport of both electrolyte ions and electrons due to higher electroactive surface areas and enhanced electrical conductivity. As an anode material, nanorod-like β-FeOOH with the average diameter of 139 ± 30 nm and the length of 796 ± 140 nm was obtained by a hydrothermal method. The NiCoMnO2 and β-FeOOH electrode materials showed the good electrochemical performance with maximum specific capacitances of 726 F g-1 and 276 F g-1 at 1 A g-1, respectively. Furthermore, the fabricated asymmetric supercapacitor (ASC) NiCoMnO2//β-FeOOH device exhibited excellent specific capacitance of 110 F g-1 at 1 A g-1, cycle stability of 84.5% after 2000 charge/discharge cycles and high energy density of 34.38 Wh kg-1 at the power density of 750 W kg-1.
Keywords
$NiCoMnO_2$ micro-flower; superstructure; ${\beta}$-FeOOH nanorod; asymmetric; supercapacitor electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Pan, Y. Wang, W. Xu, Z. Nie, S. Liang, Z. Nie, C. Wang, G. Cao, and J. G. Zhang, "High-performance Anode Based on Porous $Co_3O_4$ Nanodiscs", J. Power Sources, 2014, 225, 125-129.
2 N. Chen, J. T. Jiang, C. Y. Xu, S. J. Yan, and L. Zhen, "Rational Construction of Uniform CoNi-based Core-shell Microspheres with Tunable Electromagnetic Wave Absorption Properties", Sci. Rep., 2018, 8, 3196-3205.   DOI
3 B. G. S. Raj, H. Y. Kim, and B. S. Kim, "Ultrasound Assisted Formation of $Mn_2SnO_4$ Nanocube as Electrodes for High Performance Symmetrical Hybrid Supercapacitors", Electrochim. Acta, 2018, 278, 93-105.   DOI
4 Y. Q. Wu, X. Y. Chen, P. T. Ji, and Q. Q. Zhou, "Sol-gel Approach for Controllable Synthesis and Electrochemical Properties of $NiCo_2O_4$ Crystals as Electrode Materials for Application in Supercapacitors", Electrochim. Acta, 2011, 56, 7517-7522.   DOI
5 J. W. Acharya, T. H. Ko, J. G. Seong, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "Hybrid Electrodes Based on Zn-Ni-Co Ternary Oxide Nanowires and Nanosheets for Ultra-high-rate Asymmetric Supercapacitors", ACS Appl. Nano Mater., 2020, 3, 8679-8690.   DOI
6 G. S. Gund, D. P. Dubal, N. R. Chodankar, J. Y. Cho, P. G. Romero, C. Park, and C. D. Lokhande, "Low-cost Flexible Supercapacitors with High-energy Density Based on Nanostructured $MnO_2$ and $Fe_2O_3$ Thin Films Directly Fabricated onto Stinless Steel", Sci. Rep., 2015, 5, 12454-12466.   DOI
7 J. Park, T. H. Ko, S. Balasubramaniam, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "Enhancing the Performance and Stability of $NiCo_2O_4$ Nanoneedle Coated on Ni Foam Electrodes with Ni Seed Layer for Supercapacitor Applications", Ceram. Int., 2019, 45, 13099-13111.   DOI
8 K. O. Oyedotun, M. J. Madito, D. Y. Momodu, A. A. Mirghni, T. M. Masikhwa, and N. Manyala, "Synthesis of Ternary $NiCo-MnO_2$ Nanocomposite and Its Application as a Novel High Energy Supercapattery Device", Chem. Eng. J., 2018, 335, 416-433.   DOI
9 C. Pan, H. Gu, and L. Dong, "Synthesis and Electrochemcial Performance of Polyaniline@$MnO_2$/graphene Ternary Composites for Electrochemical Supercapacitors", J. Power Sources, 2016, 303, 175-181.   DOI
10 Z. Zhao, T. Shen, Z. Liu, Q. Zhong, and Y. Qim, "Facile Fabrication of Binder-free Reduced Graphene Oxide/$MnO_2$/Ni Foam Hybrid Electrode for High-performance Supercapacitors", J. Alloys Compd., 2020, 812, 152124-152132.   DOI
11 K. O. Oyedotun, Y. M. Masikhwa, A. A. Mirghni, B. K. Mutuma, and N. Manyala, "Electrochemical Properties of Asymmetric Supercapacitor Based on Optimized Carbon-base Nickel-cobalt-manganese Ternary Hydroxide and Sulphur-doped Carbonized Iron-polyaniline Electrodes", Electrochim. Acta, 2020, 334, 135610-135621.   DOI
12 X. Zhang, L. An, J. Yin, P. Xi, Z. Zheng, and Y. Du, "Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Applcation", Sci. Rep., 2017, 7, 43590-43599.   DOI
13 Y. Zhang, L. Li, H. Su, W. Huang, and X. Dong, "Binary Metal Oxide: Advanced Energy Storage Materials in Supercapacitor", J. Mater. Chem. A, 2015, 3, 43-59.   DOI
14 P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, "Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-metal Oxide Nanowire/single-walld Carbon Nanotube Hybrid Thin-film Electrodes", ACS Nano, 2010, 4, 4403-4411.   DOI
15 Z. Pan, J. Yang, Q. Zhang, M. Liu, Y. Hu, Z. Kou, N. Liu, X. Yang, X. Ding, H. Chen, J. Li, K. Zhang, Y. Qiu, Q. Li, J. Wang, and Y. Zhang, "All-solid-state Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility", Adv. Energy Mater., 2019, 9, 1802753-1802762.   DOI
16 X. Wu, B. Huang, Q. Wang, and Y. Wang, "Wide Potential and High Energy Density for an Asymmetric Aqueous Supercapacitor", J. Mater. Chem. A, 2019, 7, 19017-19025.   DOI
17 J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, and Y. H. Lee, "Asymmetric Supercapacitors Based on Graphene/$MnO_2$ Nanospheres and Graphene/$MoO_3$ Nanosheets with High Energy Density", Adv. Funct. Mater., 2013, 23, 5074-5083.   DOI
18 T. H. Ko, S. Radhakrishnan, W. K. Choi, M. K. Seo, and B. S. Kim, "Core/shell-like $NiCo_2O_4$-decorated MWCNT Hybrids Prepared by a Dry Synthesis Technique and Its Supercapacitor Applications", Mater. Lett., 2016, 166, 105-109.   DOI
19 S. G. Krishnan, M. Harilal, B. Pal, I. I. Misnon, C. Karuppiah, C. C. Yang, and R. Jose, "Improving the Symmetry of Asymmetric Supercapacitors Using Battery-type Positive Electrodes and Activated Carbon Negative Electrodes by Mass and Charge Balance", J. Electroanal. Chem., 2017, 805, 126-132.   DOI
20 T. H. Ko, J. G. Seong, S. Radhakrishnan, C. S. Kwak, M. S. Khil, H. Y. Kim, and B. S. Kim, "Dual Functional Nickel Cobalt/MWCNT Composite Electrode-based Electrochemcial Capacitor and Enzymeless Glucose Biosensor Applications: Influence of Ni/Co Molar Ratio", J. Ind. Eng. Chem., 2019, 73, 1-7.   DOI
21 P. F. Liu, J. J. Zhou, G. C. Li, M. K. Wu, K. Tao, F. Y. Yi, W. N. Zhao, and L. Han, "A Hierarchical NiO/NiMn-layered Double Hydroixde Nanosheet Array on Ni Foam for High Performance Supercapacitor", Dalton Trans., 2017, 46, 7388-7391.   DOI
22 Y. Zhong, X. Cao, Y. Liu, L. Cui, and J. Liu, "Nickel Cobalt Manganese Ternary Carbonate Hydroxide Nanoflakes Branched on Cobalt Carbonate Hydroxide Nanowire Arrays as Novel Electrode Material for Supercapacitors with Outstanding Performance", J. Colloid Interface Sci., 2021, 581, 11-20.   DOI
23 V. Venkatachalam, A. Alsalme, A. Alghamdi, and R. Jayavel, "High Performance Electrochemical Capacitor Based on $MnCo_2O_4$ Nanostructured Electrode", J. Electroanal. Chem., 2015, 756, 94-100.   DOI
24 Y. L. T. Ngo, L. Sui, W. Ahn, J. S. Chung, and S. H. Hur, "$NiMn_2O_4$ Spinel Binary Nanostructure Decorated on Three-dimensional Reduced Graphene Oxide Non-enzymatic Glucose Sensor", Nanoscale, 2017, 9, 19318-19327.   DOI
25 B. S. Kumar, T. H. Ko, and B. S. Kim, "Rational Design of Binder-free $ZnCo_2O_4$ and $Fe_2O_3$ Decorated Porous 3D Ni as High-performance Electrodes for Asymmetric Supercapacitor", Ceram. Int., 2018, 44, 10635-10645.   DOI
26 X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun, and J. Zhang, "Morphology-controllable Preparation of $NiFe_2O_4$ as High Performance Electrode Material for Supercapacitor", Electrochim. Acta, 2018, 296, 181-189.
27 T. H. Ko, S. Radhakrishnan, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "A Green and Scalable Dry Synthesis of $NiCo_2O_4$/graphene Nanohybrids for High-performance Supercapacitor and Enzymeless Glucose Biosensor Applications", J. Alloys Compd., 2017, 696, 193-200.   DOI
28 T. H. Ko, D. Lei, S. Balasubramaniam, M. K. Seo, Y. S. Chung, H. Y. Kim, and B. S. Kim, "Polypyrrole-decorated Hierarchical $NiCo_2O_4$ Nanoneedles/carbon Fiber Papers for Flexible High Performance Supercapacitor Applications", Electrochim. Acta, 2017, 247, 524-534.   DOI
29 X. Zhu, H. Tao, and M. Li, "Co-precipitation Synthesis of Nickel Cobalt Hexacyanoferrate for Binder-free High-performance Supercapacitor Electrodes", Int. J. Hydrogen Energy, 2020, 45, 14452-14460.   DOI
30 J. Lin, Y. Yan, H. Wang, X. Zheng, Z. Jiang, Y. Wang, J. Qi, J. Cao, W. Fei, and J. Feng, "Hierarchical $Fe_2O_3$ and NiO Nanotube Arrays as Advanced Anode and Cathode Electrodes for High-performance Asymmetric Supercapacitors", J. Alloys Compd., 2019, 794, 255-260.   DOI
31 A. Kumar, D. Sarkar, S. Mukherjee, S. Patil, D. D. Sarma, and A. Shukla, "Realizing an Asymmetric Supercapacitor Employing Carbon Nanotubes Anchored to $Mn_3O_4$ Cathode and $Fe_3O_4$ Anode", ACS Appl. Mater. Interfaces, 2018, 10, 42484-42493.   DOI
32 C. Long, M. Zheng, Y. Xiao, B. Lei, H. Dong, H. Zhang, H. Hu, and Y. Liu, "Amorphous Ni-Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors", ACS Appl. Mater. Interfaces, 2015, 7, 24419-24429.   DOI
33 X. Zheng, Z. Han, F. Chai, F. Qu, H. Xia, and X. Wu, "Flexible Heterostructured Supercapacitor Electrodes Based on ${\alpha}-Fe_2O_3$ Nanosheets with Excellent Electrochemical Performances", Dalton Trans., 2016, 45, 12862-12870.   DOI
34 Y. Park, M. Oh, Y. Lee, and H. Park, "Facile Thermochemical Conversion of FeOOH Nanorods to $ZnFe_2O_4$ Nanorods for High-rate Lithium Storage", RSC Adv., 2019, 9, 21444-21450.   DOI
35 J. Acharya, T. H. Ko, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "Oxalic Acid Assisted Rapid Synthesis of Mesoporous $NiCo_2O_4$ Nanorods as Electrode Materials with Higher Energy Density and Cycle Stability for High-performance Asymmetric Hybrid Supercapacitor Applications", J. Colloid Interface Sci., 2020, 564, 65-76.   DOI
36 J. Chen, X. Wang, J. Wang, and P. S. Lee, "Sulfidation of NiMn-layerd Double Hydroxides/graphene Oxide Composites Toward Supercapaciotr Electrodes with Enhanced Performance", Adv. Energy Mater., 2016, 6, 1501745-1501752.   DOI
37 Y. Li, J. Pan, J. Wu, T. Yi, and Y. Xie, "Mesoporous $NiCo_2O_4$ Nanoneedles@$MnO_2$ Nanoparticles Grown on Nickel Foam for Electrode Used in High-performance Supercapacitors", J. Energy Chem., 2019, 31, 167-177.   DOI
38 Q. Zhu, H. Hu, G. Li, C. Zhu, and Y. Yu, "$TiO_2$Nanotube Arrays Grafted with $MnO_2$ Nanosheets as High-performance Anode for Lithium Ion Battery", Electrochim. Acta, 2015, 156, 252-260.   DOI