Browse > Article
http://dx.doi.org/10.12772/TSE.2020.57.225

Electrochromic Properties of Hexyl- and Perfluorohexyl-Substituted Symmetrical Viologens in Ionic Gels  

Pande, Gaurav K. (Department of Organic Material Science and Engineering, Pusan National Univeristy)
Park, Jong S. (Department of Organic Material Science and Engineering, Pusan National Univeristy)
Publication Information
Textile Science and Engineering / v.57, no.4, 2020 , pp. 225-232 More about this Journal
Abstract
Herein, we present the electrochromic properties of viologen compounds with hexyl and perfluorohexyl substituents in an ionic gel composition. Hexyl viologen (1), and corresponding phenyl-inserted viologen (2) and perfluorohexyl phenyl viologen (3), showed low reduction potentials of -1.4, -1.2, and -1.3 V, respectively. Spectroelectrochemistry measurements of 1 revealed changes from yellow to blue, with a λmax of 596 nm. Further, the phenyl-inserted viologens 2 and 3 showed green transitions, with a λmax of 600 nm, due to longer conjugation by the phenyl moiety. In the cyclic stability measurements, viologen 1 exhibited reversible color changes, with a transmittance change of 35.1% and a corresponding change in optical density of 0.227. Its coloration efficiency was calculated to be 83.6 ㎠/C. Density functional theory calculations showed that both the terminal substitution and phenyl insertion effectively controlled the band-gap energy of the resulting viologen compounds. The findings of this study prove that substituted viologens provide a simple and efficient method to produce wide color ranges using an electrochromic approach. Hence, these compounds will find promising applications in electrochromic displays and windows.
Keywords
alkylated viologen; phenyl substituted viologens; ion gel; electrochromic device; redox property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sen, J. Saraidaridis, S. Kim, G. Tayhas, and R. Palmore, "Viologens as Charge Carriers in a Polymer-Based Battery Anode", ACS Appl. Mater. Interfaces, 2013, 5, 7825-7830.   DOI
2 H. C. Moon, T. P. Lodge, and C. D. Frisbie, "Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic", Chem. Mater., 2015, 27, 1420-1425.   DOI
3 H. Oh, D. G. Seo, T. Y. Yun, C. Y. Kim, and H. C. Moon, "Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl. Mater. Interfaces, 2017, 9, 7658-7665.   DOI
4 H. C. Lu, S. Y. Kao, H. F. Yu, T. H. Chang, C. W. Kung, and K. C. Ho, "Achieving Low-Energy Driven Viologen-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids", ACS Appl. Mater. Interfaces, 2016, 8, 30351-30361.   DOI
5 J. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, "Organic Electroluminescent Devices", Science, 1996, 279, 884-888.
6 E. Hadjoudis and I. Mavridis, "Photochromism and Thermochromism of Schiff Bases in the Solid State: Structural Aspects", Chem. Soc. Rev., 2004, 33, 579-588.   DOI
7 C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, and B. Gregg, "Photoelectrochromic Windows and Displays", Nature, 1996, 383, 608-610.   DOI
8 S. Kao, Y. Kawahara, S. Nakatsuji, and K. Ho, "Achieving a Large Contrast, Low Driving Voltage, and High Stability Electrochromic Device with a Viologen Chromophore", J. Mater. Chem. C., 2015, 3, 3266-3272.   DOI
9 G. Sonmez, H. Meng, and F. Wudl, "Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency", Chem. Mater., 2004, 16, 574-580.   DOI
10 A. Guerfi and L. Dao, "Electrochromic Molybdenum Oxide Thin Film Prepared by Electrodeposition", J. Electrochem. Soc., 1989, 136, 2435-2436.   DOI
11 B. Jelle and G. Hagen, "Transmission Spectra of an Electrochromic Window Based on Polyaniline, Prussian Blue and Tungsten Oxide", J. Electrochem. Soc., 1993, 140, 3560-3564.   DOI
12 S. Suganya, N. Kim, J. Y. Jeong, and J. S. Park, "Benzotriazole-Based Donor-Acceptor Type Low Band-gap Polymers with a Siloxane-Terminated Side-Chain for Electrochromic Applications", Polymer, 2017, 116, 226-232.   DOI
13 M. Otely, F. Alamer, Y. Zhu, A. Singhaviranon, X. Zhang, M. Li, A. Kumar, and G. Sotzing, "Acrylated Poly(3,4-propylenedioxythiopene) for Enhancement of Lifetime and Optical Properties for Single-Layer Electrochromic Devices", ACS Appl. Mater. Interfaces, 2014, 6, 1734-1739.   DOI
14 G. Ding, C. Cho, C. Chen, D. Zhou, X. Wang, A. X. Tan, J. Xu, and X. Lu, "Black-to-Transmissive Electrochromism of Azulene-Based Donor-Acceptor Copolymers Complemented by Poly(4-styrene sulfonic acid)-Doped Poly(3,4-ethylenedioxythiophene)", Org. Electron., 2013, 14, 2748-2755.   DOI
15 T. Augusto, E. Teixeira Neto, A. A. Teixeira Neto, R. Vichessi, M. Vidotti, and S. Cordoba de Torresi, "Electrophoretic Deposition of Au@PEDOT Nanoparticles Towards the Construction of High-Performance Electrochromic Electrodes", Sol. Energy Mater. Sol. Cells, 2013, 118, 72-80.   DOI
16 G. Chidichimo, B. De Simone, D. Imbardelli, M. De Benedittis, M. Barberio, L. Ricciardi, and A. Beneduci, "Influence of Oxygen Impurities on the Electrochromic Response of Viologen-Based Plastic Films", Phys. Chem. C, 2014, 118, 13484-13492.   DOI
17 C. Granqvist, "Electrochromic Tungsten Oxide Films: Review of Progress 1993-1998", Sol. Energy Mater. Sol. Cells, 2000, 60, 201-262.   DOI
18 R. Sydam, M. Deepa, and A. Joshi, "A Novel 1,1'-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl) butyl]-4,4'-bipyridinium dibromide (viologen) for a High Contrast Electrochromic Device", Org. Electron., 2013, 14, 1027-1036.   DOI
19 B. Gadgil, P. Damlina, T. Aaritaloa, and C. Kvarnstrom, "Electrosynthesis of Viologen Cross-Linked Polythiophene in Ionic Liquids and its Electrochromic Properties", Electrochem. Acta, 2014, 133, 268-274.   DOI
20 B. Gadgil, P. Damlina, E. Dmitrieva, T. Aaritaloa, and C. Kvarnstrom, "ESR/UV-Vis-NIR Spectroelectrochemical Study and Electrochromic Contrast Enhancement of a Polythiophene Derivative Bearing a Pendant Viologen", RSC Adv., 2015, 5, 42242-42249.   DOI
21 Y. Watanabe, K. Imaizumi, K. Nakamura, and N. Kobayashi, "Effect of Counter Electrode Reaction on Coloration Properties of Phthalate-Based Electrochromic Cell", Sol. Energy Mater. Sol. Cells, 2012, 99, 88-94.   DOI
22 F. Han, M. Higuchi, and D. Kurth, "Metallo-Supramolecular Polymers Based on Functionalized Bis-terpyridines as Novel Electrochromic Materials", Adv. Mater., 2007, 19, 3928-3931.   DOI
23 C. Park, J. Heo, K. Kim, G. Yi, J. Kang, J. Park, Y. Kim, and S. Park, "1-Dimensional Fibre-Based Field-Effect Transistors Made by Low-Temperature Photochemically Activated Sol-Gel Metal-Oxide Materials for Electronic Textiles", RSC Adv. 2016, 6, 18596-18600.   DOI
24 J. B. Arochiam, H. S. Son, S. H. Han, G. Balamurugan, Y. H. Kim, and J. S. Park, "Iron Phthalocyanine Incorporated Metallo-supramolecular Polymer for Superior Electrochromic Performance with High Coloration Efficiency and Switching Stability", ACS Appl. Energy Mater., 2019, 2, 8416-8424.   DOI
25 N. Kim and J. S. Park, "Electrochromic Performance of Singlelayered Electrochromic Device Containing Picene Ion Gel", Text. Sci. Eng., 2020, 67, 100-105.
26 L. Striepe and T. Baumgartner, "Viologens and Their Application as Functional Materials", Chemistry-A European J. Rev., 2017, 23, 16924-16940.   DOI
27 H.C. Lu, S. Y. Kao, T. H. Chang, C. W. Kung, and K. C. Ho, "An Electrochromic Device Based on Prussian Blue, Selfimmobilized Vinyl Benzyl Viologen, and Ferrocene", Sol. Energy Mater. Sol. Cells, 2016, 147, 75-84.   DOI
28 G. K. Pande, J. H. Choi, J. E. Lee, Y. E. Kim, J. H. Choi, H. W. Choi, H. G. Chae, and J. S. Park, "Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane Exhibiting Outstanding Electrochromic Performances", Chem. Eng. J., 2020, 393, 124690-124698.   DOI
29 Y. Alesanco, A. Vinuales, G. Cabanero, J. Rodriguez, and R. Tena-Zaera, "Colorless-to-Black/Grey Electrochromic Devices Based on Single 1-Alkyl-1-Aryl Asymmetric Viologen- Modified Monolayered Electrodes", Adv. Optical Mater., 2017, 5, 1600989.   DOI
30 G. K. Pande, N. Kim, J. H. Choi, G. Balamurugan, H. C. Moon, and J. S. Park, "Effect of Counter Ion on Electrochromic Behaviors of Asymmetrically Substituted Viologens", Sol. Energy Mater. Sol. Cells, 2019, 197, 25-31.   DOI
31 J. H. Choi, G. K. Pande, Y. R. Lee, and J. S. Park, "Electrospun Ion Gel Nanofibers for High-Performance Electrochromic Devices with Outstanding Electrochromic Switching and Long-term Stability", Polymer, 2020, 194, 122402-122410.   DOI
32 T. Qiu, X. Xu, J. Liu, and X. Qian, "Novel Perfluoroalkyl Phthalocyanine Metal Derivatives: Synthesis and Photodynamic Activities", Dyes Pigments, 2009, 83, 127-133.   DOI
33 H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, "Multicolored, Low Power, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl. Mater. Interfaces, 2016, 8, 6252-6260.   DOI
34 H. C. Ko, S. Park, W. Paik, and H. Lee, "Electrochemistry and Electrochromism of the Polythiophene Derivative with Viologen Pendant", Synthetic Metals, 2002, 132, 15-20.   DOI