Browse > Article
http://dx.doi.org/10.12772/TSE.2020.57.113

Effect of Surface Properties of Carbon Nanotube Film on the Performance of Lithium-air Batteries  

Lee, A Young (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kang, Hee Soo (Department of Organic Materials and Fiber Engineering, Soongsil University)
Song, Hyeonjun (Department of Organic Materials and Fiber Engineering, Soongsil University)
Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Textile Science and Engineering / v.57, no.2, 2020 , pp. 113-124 More about this Journal
Abstract
Lithium-air (Li-air) batteries, which use oxygen as an active material for the positive electrode, have many advantages such as low weight, low pollution, and low cost compared with commercial batteries. In this study, post-treatments, such as acid and heat treatment, were conducted on carbon nanotube (CNT) films, which were fabricated via the direct spinning method, to change the surface properties of the CNT films. The post-treated CNT films were used as positive electrodes for Li-air batteries to investigate the effect of post-treatment on the performance of Li-air batteries. The raw CNT film showed a high capacity of 7000 mAh/g after 18 cycles. The acid-treated and heat-treated CNT films exhibited improved cycling performance compared with the raw CNT film. It is known that the performance of the Li-air battery is affected by the morphology and functional group of the CNT film electrode.
Keywords
carbon nanotube; Li-air battery; post-treatment; surface properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.-W. Park, J.-W. Kim, J. Kim, and J. Lee, "Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries", Appl. Chem. Eng., 2012, 23, 247-252.
2 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-Air Battery: Promise and Challenges", J. Phys. Chem. Lett., 2010, 1, 2193-2203.   DOI
3 K. M. Abraham and Z. Jiang, "A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery", J. Electrochem. Soc., 1996, 143, 1-5.   DOI
4 J. Shui, F. Du, C. Xue, Q. Li, and L. Dai, "Vertically Aligned N-Doped Coral-like Carbon Fiber Arrays as Efficient Air Electrodes for High-Performance Nonaqueous Li-$O_2$ Batteries", ACS Nano, 2014, 8, 3015-3022.   DOI
5 D. Y. Kim, M. Kim, D. W. Kim, J. Suk, O. O. Park, and Y. Kang, "Flexible Binder-free Graphene Paper Cathodes for High-performance Li-$O_2$ Batteries", Carbon, 2015, 93, 625-635.   DOI
6 D. Xu, Z. Wang, J. Xu, L. Zhang, L. Wang, and X. Zhang, "A Stable Sulfone Based Electrolyte for High Performance Rechargeable Li-$O_2$ Batteries", Chem. Commun., 2012, 48, 11674-11676.   DOI
7 B. Sun, X. Huang, S. Chen, J. Zhang, and G. Wang, "An Optimized $LiNO_3$/DMSO Electrolyte for High-performance Rechargeable Li-$O_2$ Batteries", RSC Adv., 2014, 4, 11115-11120.   DOI
8 J. M. Garcia, H. W. Horn, and J. E. Rice, "Dominant Decomposition Pathways for Ethereal Solvents in Li-$O_2$ Batteries", J. Phys. Chem. Lett., 2015, 6, 1795-1799.   DOI
9 D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. O. Vitoriano, P. Hammond, C. V. Thompson, and S. H. Yang, "Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries", J. Phys. Chem. Lett., 2014, 5, 2850-2856.   DOI
10 M. A. Schroeder, N. Kumar, A. J. Pearse, C. Liu, S. B. Lee, G. W. Rubloff, K. Leung, and M. Noked, "The DMSO-$Li_2O_2$ Interface in the Rechargeable Li-$O_2$ Battery Cathode Theoretical and Experimental Perspectives on Stability", ACS Appl. Mater. Interfaces, 2015, 7, 11402-11411.   DOI
11 H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, and B. Scrocati, "An Improved High-performance Lithium-air Battery", Nat. Chem., 2012, 4, 579-585.   DOI
12 C. Li, O. Fontaine, S. A. Freunberger, L. Johnson, S. Grugeon, S. Laruelle, P. G. Bruce, and M. Armand, "Aprotic Li-$O_2$ Battery Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent", J. Phys. Chem. C, 2014, 118, 3393-3401.   DOI
13 W. Zhou, H. Zhang, H. Nie, Y. Ma, Y. Zhang, and H. Zhang, "Hierarchical Micron-Sized Mesoporous/Macroporous Graphene with Well-Tuned Surface Oxygen Chemistry for High Capacity and Cycling Stability Li-$O_2$ Battery", ACS Appl. Mater. Interfaces, 2015, 7, 3389-3397.   DOI
14 E. N. Nasybulin, W. Xu, B. L. Mehdi, E. Thomsen, M. H. Engelhard, R. C. Masse, P. Bhattacharya, M. Gu, W. Bennett, Z. Nie, C. Wang, N. D. Browning, and J. G. Zhang, "Formation of Interfacial Layer and Long-Term Cyclability of Li-$O_2$ Batteries", ACS Appl. Mater. Interfaces, 2014, 6, 14141-14151.   DOI
15 Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, and X. B. Zhang, "Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-$O_2$ Batteries", Adv. Funct. Mater., 2012, 22, 3699-3705.   DOI
16 Z. Zhang, J. Bao, C. He, Y. Chen, J. Wei, and Z. Zhou, "Hierarchical Carbon-Nitrogen Architectures with Both Mesopores and Macrochannels as Excellent Cathodes for Rechargeable Li-$O_2$ Batteries", Adv. Funct. Mater., 2014, 24, 6826-6833.   DOI
17 J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W, D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, and J. G. Zhang, "Hierarchically Porous Graphene as a LithiumAir Battery Electrode", Nano Letters, 2011, 11, 5071-5078.   DOI
18 L. Wang, M. Ara, K. Wadumesthrige, S. Salley, and K. Y. S. Ng, "Graphene Nanosheet Supported Bifunctional Catalyst for High Cycle Life Li-air Batteries", J. Power Sources, 2013, 234, 8-15.   DOI
19 G. G. Kumar, M. Christy, H. Jang, and K. S. Nahm, "Cobaltite Oxide Nanosheets Anchored Graphene Nanocomposite as an Efficient Oxygen Reduction Reaction (ORR) Catalyst for the Application of Lithium-air Batteries", J. Power Sources, 2015, 288, 451-460.   DOI
20 W. Zhang, J. Zhu, H. Ang, H. Wang, H. T. Tan, D. Yang, C. Xu, N. Xiao, B. Li, W. Liu, X. Wang, H. H. Hng, and Q. Yan, "Fe-Based Metallopolymer Nanowall-Based Composites for Li-$O_2$ Battery Cathode", ACS Appl. Mater. Interfaces, 2014, 6, 7164-7170.   DOI
21 D. Qiu, G. Bu, B. Zhao, Z. Lin, L. Pu, L. Pan, and Y. Shi, "In situ Growth of Mesoporous NiO Nanoplates on a Graphene Matrix as Cathode Catalysts for Rechargeable Lithium-air Batteries", Mater. Lett., 2015, 141, 43-46.   DOI
22 G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin, and P. Zelenay, "Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium-$O_2$ Battery Cathodes", ACS Nano, 2012, 6, 9764-9776.   DOI
23 H. D. Lim, K. Y. Park, H. Song, E. Y. Jang, H. Gwon, J. Kim, Y. H. Kim, M. D. Lima, R. O. Robles, X. Lepro, R. H. Baughman, and K. Kang, "Enhanced Power and Rechargeability of a Li-$O_2$ Battery Based on a Hierarchical-Fibril CNT Electrode", Adv. Mater., 2013, 25, 1348-1352.   DOI
24 M. J. Song and M. W. Shin, "Fabrication and Characterization of Carbon Nanofiber@mesoporous Carbon Core-shell Composite for the Li-air Battery", Appl. Surface Sci., 2014, 320, 435-440.   DOI
25 R. Carter, L. Oakes, A. P. Cohn, J. Holzgrafe, H. F. Zarick, S. Chatterjee, R. Bardhan, and C. L. Pint, "Solution Assembled Single-Walled Carbon Nanotube Foams: Superior Performance in Supercapacitors, Lithium-Ion, and Lithium-Air Batteries", J. Phys. Chem. C, 2014, 118, 20137-20151.   DOI
26 G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, and E. J. Plichta "Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes", J. Electrochem. Soc., 2010, 157, A953-A956.   DOI
27 Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, and X. Sun, "Nitrogen-doped Carbon Nanotubes as Cathode For Lithium-air Batteries", Electrochem. Commun., 2012, 13, 668-672.   DOI
28 C. K. Lee and Y. J. Park, "Polyimide-wrapped Carbon Nanotube Electrodes for Long Cycle Li-air Batteries", Chem. Commun., 2015, 51, 1210-1213.   DOI
29 V. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, and G. V. Chase, "The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries", J. Electrochem. Soc., 2013, 160, A160-A171.   DOI
30 J. Uddin, V. S. Bryantsev, V. Giordani, W. Walker, G. V. Chase, and D. Addison, "Lithium Nitrate as Regenerable SEI Stabilizing Agent for Rechargeable Li/$O_2$ Batteries", J. Phys. Chem. Lett., 2013, 4, 3760-3765.   DOI
31 R. S. Assary, J. Lu, P. Du, X. Luo, X. Zhang, Y. Ren, L. A. Curtiss, and K. Amine, "The Effect of Oxygen Crossover on the Anode of a Li-$O_2$ Battery Using an Ether-Based Solvent Insights from Experimental and Computational Studies", ChemSusChem Commun., 2013, 6, 51-55.   DOI
32 W. J. Kwak, K. C. Lau, C. D. Shin, K. Amine, L. A. Curtiss, and Y. K. Sun, "$AMO_2C$/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life", ACS Nano, 2015, 9, 4129-4137.   DOI
33 M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, "Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes", Carbon, 2002, 40, 2043-2061.   DOI
34 R. Mi, S. Li, X. Liu, L. Liu, Y. Li, J. Mei, Y. Chen, H. Liu, H. Wang, H. Yana, and W. M. Lau, "Electrochemical Performance of Binder-free Carbon Nanotubes with Different Nitrogen Amounts Grown on the Nickel Foam as Cathodes in Li-$O_2$ Batteries", J. Mater. Chem. A, 2014, 2, 18746-18753.   DOI
35 J. Li, Y. Zhao, M. Zou, C. Wu, Z. Huang, and L. Guan, "An Effective Integrated Design for Enhanced Cathodes of Ni Foam-Supported Pt/Carbon Nanotubes for Li-$O_2$ Batteries", ACS Appl. Mater. Interfaces, 2014, 6, 12479-12485.   DOI
36 W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, and D. Addison, "A Rechargeable Li-$O_2$ Battery Using a Lithium Nitrate N,N-Dimethylacetamide Electrolyte", J. Am. Chem. Soc., 2013, 135, 2076-2079.   DOI
37 S. Huang, W. Fan, X. Guo, F. Meng, and X. Liu, "Positive Role of Surface Defects on Carbon Nanotube Cathodes in Overpotential and Capacity Retention of Rechargeable Lithium-Oxygen Batteries", ACS Appl. Mater. Interfaces, 2014, 6, 21567-21575.   DOI
38 D. M. Itkis, D. A. Semenenko, E. Yu. Kataev, A. I. Belova, V. S. Neudachina, A. P. Sirotina, M. Havecker, D. Teschner, K. G. Axel, P. Dudin, A. Barinov, E. A. Goodilin, S. H. Yang, and L. V. Yashina, "Reactivity of Carbon in Lithium-Oxygen Battery Positive Electrodes", Nano Letters, 2013, 13, 4697-4701.   DOI
39 E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon "Promoting Formation of Noncrystalline $Li_2O_2$ in the Li-$O_2$ Battery with $RuO_2$ Nanoparticles", Nano Letter, 2013, 13, 4679-4684.   DOI