Browse > Article
http://dx.doi.org/10.12772/TSE.2019.56.265

Fabrication and Characterization of Meta-Aramid-Based Nanocomposite Films Reinforced with Graphene  

Jeon, Gil-Woo (Korea Textile Development Institute)
Jeong, Young Gyu (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Textile Science and Engineering / v.56, no.5, 2019 , pp. 265-271 More about this Journal
Abstract
Herein, we report the microstructures and thermal and electrical properties of meta-aramid-based nanocomposite films containing different graphene contents of 0-10.0 wt%, which are fabricated by solution-casting of meta-aramid and graphene mixtures in N,N-dimethylacetamide and lithium chloride. The microstructure, thermal stability, and dynamic mechanical thermal and electrical properties of the nanocomposite films were investigated by considering the dispersion and loading content of the graphene sheets. The electron microscopic images and X-ray diffraction patterns revealed that the graphene sheets were well dispersed in the nanocomposite films with relatively low graphene loadings of 0.1-1.0 wt%. However, partially ordered graphene aggregates were formed in the nanocomposite films with high graphene contents of 3.0-10.0 wt%. The thermal stability and dynamic mechanical thermal properties were observed to increase with the graphene content in the nanocomposite films. The electrical percolation threshold of the nanocomposite films was attained at a critical graphene content between 1.0 wt% and 3.0 wt%. Consequently, the electrical resistivity decreased substantially from ${\sim}10^{16}{\Omega}cm$ cm of the neat meta-aramid film to ${\sim}10^2{\Omega}cm$ of the nanocomposite film with 10.0 wt% graphene loading.
Keywords
meta-aramid; graphene; nanocomposite films; thermal stability; electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ansari and E. P. Giannelis, "Functionalized Graphene Sheet-poly(vinylidene fluoride) Conductive Nanocomposites", J. Polym. Sci. Part B: Polym. Phys., 2009, 47, 888-897.   DOI
2 S. Villar-Rodil, J. I. Paredes, A. Martinez-Alonso, and J. M. D. Tascon, "Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers", Chem. Mater., 2001, 13, 4297-4304.   DOI
3 T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, "Recent Advances in Graphene Based Polymer Composites", Prog. Polym. Sci., 2010, 35, 1350-1375.   DOI
4 S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, "Flexible Conductive Graphene/poly(vinyl chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability", Carbon, 2011, 49, 198-205.   DOI
5 B.-X. Yang, J.-H. Shi, K. P. Pramoda, and S. H. Goh, "Enhancement of the Mechanical Properties of Polypropylene Using Polypropylene-grafted Multiwalled Carbon Nanotubes", Compos. Sci. Technol., 2008, 68, 2490-2497.   DOI
6 P. Nimmanpipug, K. Tashiro, and O. Rangsiman, “Factors Governing the Three-dimensional Hydrogen-bond Network Structure of Poly(m-phenylene isophthalamide) and a Series of Its Model Compounds (4): Similarity in Local Conformation and Packing Structure between a Complicated Three-arm Model Compound and the Linear Model Compounds”, J. Phys. Chem. B, 2006, 110, 20858-20864.   DOI
7 C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 2008, 321, 385-388.   DOI
8 J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos- Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus, and M. Terrones, "Thermal Stability Studies of CVD-grown Graphene Nanoribbons: Defect Annealing and Loop Formation", Chem. Phys. Lett., 2009, 469, 177-182.   DOI
9 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphenebased Ultracapacitors", Nano Lett., 2008, 8, 3498-3502.   DOI
10 J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and Extrinsic Performance Limits of Graphene Devices on $SiO_2$", Nat. Nanotechnol., 2008, 3, 206-209.   DOI
11 H. Kim, A. A. Abdala, and C. W. Macosko, “Graphene/Polymer Nanocomposites”, Macromolecules, 2010, 43, 6515-6530.   DOI
12 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306, 666-669.   DOI
13 A. K. Geim and K. S. Novoselov, "The Rise of Graphene", Nat. Mater., 2007, 6, 183-191.   DOI
14 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based Composite Materials”, Nature, 2006, 442, 282-286.   DOI
15 K. Hu, D. D. Kulkarni, I. Choi, and V. V. Tsukruk, "Graphenepolymer Nanocomposites for Structuraland Functional Applications", Prog. Polym. Sci., 2014, 39, 1934-1972.   DOI
16 G. W. Jeon and Y. G. Jeong, "Electric Heating Films Based on m-aramid Nanocomposites Containing Hybrid Fillers of Graphene and Carbon Nanotube", J. Mater. Sci., 2013, 48, 4041-4049.   DOI
17 L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure", Ber. Dtsch. Bot. Ges., 1898, 31, 1481-1499.   DOI
18 I.-H. Kim and Y. G. Jeong, "Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechnaical Modulus, and Electrical Conductivity", J. Polym. Sci. Part B: Polym. Phys., 2010, 48, 850-858.   DOI
19 E. Lee and Y. G. Jeong, "Electrical and Dielectric Properties of Poly(1,3,4-oxdiazole) Nanocomposite Films with Graphene Sheets Dispersed in Layers", Fiber. Polym., 2015, 16, 2021-2027.   DOI