Browse > Article
http://dx.doi.org/10.12772/TSE.2019.56.155

HA-PLGA Nanoparticle-Incorporated Gelatin Nanofibers for Transdermal Drug Delivery  

Lee, So Yun (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University)
Jeong, Woo Yeup (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University)
Lee, Jin Hong (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University)
Kim, Han Seong (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University)
Kim, Ki Su (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.56, no.3, 2019 , pp. 155-161 More about this Journal
Abstract
In recent years, transdermal drug delivery system (TDDS) has emerged as an alternative to needle injection. TDDS offers various benefits including being noninvasive and encouraging patient compliance; however, the skin barrier, stratum corneum, prevents sufficient penetration of drugs through the skin. In this work, we have designed hyaluronic acid-poly(lactic-co-glycolic acid) nanoparticle (HA-PLGA NP)-incorporated gelatin nanofiber (GE NF/HA-PLGA) complexes for the sustained release of drugs and to avoid drug degradation in TDDS. The HA-PLGA NPs were prepared by water-in-oil-in-water (W/O/W) solvent evaporation method, while the GE NFs were fabricated by electrospinning. The successful formation of HA-PLGA NPs were confirmed by proton nuclear magnetic resonance, transmission electron microscopy, and dynamic light scattering, while that of the NFs were confirmed by field emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of in vitro release tests reveal that the GE/HA-PLGA complex shows delayed and extended release of drugs. The histological analysis demonstrates that the HA-PLGA NPs can be released from the GE NFs and penetrate the skin. These results indicate the feasibility of using GE/HA-PLGA complexes as a suitable candidate for novel TDDS.
Keywords
hyaluronic acid; poly(lactic-co-glycolic acid); nanoparticle; gelatin nanofiber; transdermal drug delivery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Marwah, T. Garg, A. K. Goyal, and G. Rath, “Permeation Enhancer Strategies in Transdermal Drug Delivery”, Drug Deliv., 2016, 23, 564-578.   DOI
2 K. Ita, "Recent Progress in Transdermal Sonophoresis", Pharm. Dev. Technol., 2017, 22, 458-466.   DOI
3 K. Ita, "Transdermal Iontophoretic Drug Delivery: Advances and Challenges", J. Drug. Target., 2016, 24, 386-391.   DOI
4 M. R. Prausnitz, "Microneedles for Transdermal Drug Delivery", Adv. Drug Deliv., 2004, 56, 581-587.   DOI
5 G. Huang and H. Huang, “Application of Hyaluronic Acid as Carriers in Drug Delivery”, Drug Deliv., 2018, 25, 766-772.   DOI
6 K. S. Kim, H. Kim, Y. Park, W. H. Kong, S. W. Lee, S. J. J. Kwok, S. K. Hahn, and S. H. Yun, "Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant", Adv. Funct. Mater., 2016, 26, 2512-2522.   DOI
7 J. H. Lee, H. S. Jeong, D. H. Lee, S. Beack, T. Kim, G.-H. Lee, W. C. Park, C. Kim, K. S. Kim, and S. K. Hahn, "Targeted Hyaluronate-Hollow Gold Nanosphere Conjugate for AntiObesity Photothermal Lipolysis", ACS Biomater. Sci. Eng., 2017, 3, 3646-3653.   DOI
8 D. N. Kapoor, A. Bhatia, R. Kaur, R. Sharma, G. Kaur, and S. Dhawan, "PLGA: a Unique Polymer for Drug Delivery", Ther. Deliv., 2015, 6, 41-58.   DOI
9 H. Lee, C. H. Ahn, and T. G. Park, "Poly[lactic-co-(glycolic acid)]-Grafted Hyaluronic Acid Copolymer Micelle Nanoparticles for Target-Specific Delivery of Doxorubicin", Macromol. Biosci., 2009, 9, 336-342.   DOI
10 B. B. S. Cerqueira, A. Lasham, A. N. Shelling, and R. Al- Kassas, "Development of Biodegradable PLGA Nanoparticles Surface Engineered with Hyaluronic Acid for Targeted Delivery of Paclitaxel to Triple Negative Breast Cancer Cells", Mater. Sci. Eng., C, 2017, 76, 593-600.   DOI
11 A. K. Yadav, A. Agarwal, G. Rai, P. Mishra, S. Jain, A. K. Mishra, H. Agrawal, and G. P. Agrawal, "Development and Characterization of Hyaluronic Acid Decorated PLGA Nanoparticles for Delivery of 5-fluorouracil", Drug Deliv., 2010, 17, 561-572.   DOI
12 N. Sahoo, R. K. Sahoo, N. Biswas, A. Guha, and K. Kuotsu, "Recent Advancement of Gelatin Nanoparticles in Drug and Vaccine Delivery", Int. J. Biol. Macromol., 2015, 81, 317-331.   DOI
13 J. B. Rose, S. Pacelli, A. J. E. Haj, H. S. Dua, A. Hopkinson, L. J. White, and F. R. A. J. Rose, “Gelatin-Based Materials in Ocular Tissue Engineering”, Materials, 2014, 7, 3106-3135.   DOI
14 B. E. Hosseinzadeh, M. Pedram, A. H. Zarmi, S. S. Kordestani, M. Rasti, Z. B. M. Hosseini, and M. M. Derikvand, "In vivo Evaluation of Gelatin/Hyaluronic Acid Nanofiber as Burnwound Healing and Its Comparison with ChitoHeal Gel", Fiber. Polym., 2016, 17, 820-826.   DOI
15 J. Li, A. He, J. Zheng, and C. C. Han, “Gelatin and Gelatin-Hyaluronic Acid Nanofibrous Membranes Produced by Electrospinning of Their Aqueous Solutions”, Biomacromolecules, 2006, 7, 2243-2247.   DOI
16 Y. Z. Zhang, J. Venugopal, Z.-M. Huang, C. T. Lim, and S. Ramakrishna, “Crosslinking of the Electrospun Gelatin Nanofibers”, Polymer, 2006, 47, 2911-2917.   DOI
17 J. H. Ko, H. Y. Yin, J. An, and D. J. Chung, "Characterization of Cross-linked Gelatin Nanofibers through Electrospinning", Macromol. Res., 2010, 18, 137-143.   DOI
18 R. Singh, P. Kesharwani, N. K. Mehra, S. Singh, S. Banerjee, and N. K. Jain, "Development and Characterization of Folate Anchored Saquinavir Entrapped PLGA Nanoparticles for Anti-tumor Activity", Drug. Dev. Ind. Pharm., 2015, 41, 1888-1901.   DOI
19 I. Takeuchi, Y. Hida, and K. Makino, "Minoxidil-encapsulated Poly(L-lactide-co-glycolide) Nanoparticles with Hair Follicle Delivery Properties Prepared Using W/O/W Solvent Evaporation and Sonication", Biomed. Mater. Eng., 2018, 29, 217-228.
20 K. J. Reddy and K. T. Karunakaran, "Purification and Characterization of Hyaluronic Acid Produced by Streptococcus zooepidemicus Strain 3523-7", J. BioSci. Biotech., 2013, 2, 173-179.
21 Q. Xing, K. Yates, C. Vogt, Z. Qian, M. C. Frost, and F. Zhao, “Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal”, Nature, 2014, 4, 4706.
22 B. C. Palmer and L. A. DeLouise, “Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting”, Molecules, 2016, 21, 1719.   DOI
23 M. R. Prausnitz and R. Langer, "Transdermal Drug Delivery", Nat. Biotechnol., 2008, 26, 1261-1268.   DOI
24 A. Z. Alkilani, M. T. C. McMrudden, and R. F. Donnelly, “Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum”, Pharmaceutics, 2015, 7, 438-470.   DOI
25 S. Bjorklund, J. Engblom, K. Thuresson, and E. Sparr, "A Water Gradient Can be Used to Regulate Drug Transport Across Skin", J. Controlled Release., 2010, 143, 191-200.   DOI