Browse > Article
http://dx.doi.org/10.12772/TSE.2018.55.390

Capacitive Touch Sensing Performance of Textile Electrodes Made of Conductive Spun Yarns and Filaments  

Choi, Sejin (Department of Organic Material Science and Engineering, Pusan National University)
Bang, Ju Yup (Department of Organic Material Science and Engineering, Pusan National University)
Min, Moon Hong (Korea Dyeing and Finishing Technology Institute)
Lee, Chang Heon (Duckwoo Co., Ltd.)
Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.55, no.6, 2018 , pp. 390-397 More about this Journal
Abstract
With the rapid growth of the Internet of things in the recent years, smart textile technologies have correspondingly attracted significant research attention in the industry. One important elementary technology being considered for smart textiles is a touch sensor input device to enable direct communication between users and other electronic devices. This study investigated the effect of the structural difference in conducting fibers on the sensing property of capacitive textile touch sensors. Conducting fibers made of stainless steel spun yarns and filaments used for electrodes presented different changes in electrical resistance with the application of tensile and compressive forces. It is believed that the different structures between spun yarns and filaments induced difference in the electric contact among their constituent fibers with the application of an external force. Moreover, the random deformation of staple fibers resulted in the unstable change of capacitance and large hysteresis, while a stable performance and low hysteresis was observed for textile sensors with filaments.
Keywords
E-textiles; smart fabrics; wearable; conducting fibers; resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Takamatsu, T. Yamashita, T. Imai, and T. Itoh, "Fabric Touch Sensors Using Projected Self-Capacitive Touch Technique", Sensor. Mater., 2013, 25, 627-634.
2 N. Lopez-Ruiz, J. Lopez-Torres, M. A. C. Rodriguez, I. P. de Vargas-Sansalvador, and A. Martinez-Olmos, "Wearable System for Monitoring of Oxygen Concentration in Breath Based on Optical Sensor", IEEE Sens. J., 2015, 15, 4039-4045.   DOI
3 S. Sheykhi, L. Mosca, and P. Anzenbacher, "Toward Wearable Sensors: Optical Sensor for Detection of Ammonium Nitratebased Explosives, ANFO and ANNM", Chem. Commun., 2017, 53, 5196-5199.   DOI
4 X. L. Fang, J. P. Tan, Y. Gao, Y. F. Lu, and F. Z. Xuan, "High- Performance Wearable Strain Sensors Based on Fragmented Carbonized Melamine Sponges for Human Motion Detection", Nanoscale, 2017, 9, 17948-17956.   DOI
5 T. M. Zhao, J. L. Li, H. Zeng, Y. M. Fu, H. X. He, L. L. Xing, Y. Zhang, and X. Y. Xue, "Self-powered Wearable Sensing-textiles for Real-time Detecting Environmental Atmosphere and Body Motion Based on Surface-triboelectric Coupling Effect", Nanotechnology, 2018, 29, 405504.   DOI
6 J. S. Roh, "Textile Touch Sensors for Wearable and Ubiquitous Interfaces", Text. Res. J., 2014, 84, 739-750.   DOI
7 C. Mattmann, F. Clemens, and G. Troster, "Sensor for Measuring Strain in Textile", Sensors-Basel, 2008, 8, 3719-3732.   DOI
8 O. Atalay, W. R. Kennon, and M. D. Husain, "Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties", Sensors-Basel, 2013, 13, 11114-11127.   DOI
9 E. Iranmanesh, A. Rasheed, W. W. Li, and K. Wang, "A Wearable Piezoelectric Energy Harvester Rectified by a Dual- Gate Thin-Film Transistor", IEEE T. Electron. Dev., 2018, 65, 542-546.   DOI
10 H. Wu, Y. A. Huang, F. Xu, Y. Q. Duan, and Z. P. Yin, "Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability", Adv. Mater., 2016, 28, 9881-9919.   DOI
11 H. Qu, O. Semenikhin, and M. Skorobogatiy, "Flexible Fiber Batteries for Applications in Smart Textiles", Smart Mater. Struct., 2015, 24, 025012.   DOI
12 L. B. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta, and Y. Cui, "Lithium-Ion Textile Batteries with Large Areal Mass Loading", Adv. Energy. Mater., 2011, 1, 1012-1017.   DOI
13 R. Sreelakshmy, S. A. Kumar, and T. Shanmuganantham, "A Wearable Type Embroidered Logo Antenna at ISM Band for Military Applications", Microw. Opt. Techn. Let., 2017, 59, 2159-2163.   DOI
14 O. Oess, "New Fibers in Textiles for Medical Purposes", Tekstil., 2004, 53, 474-477.
15 M. A. R. Osman, M. K. A. Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroidered Fully Textile Wearable Antenna for Medical Monitoring Applications", Prog. Electromagn. Res., 2011, 117, 321-337.   DOI
16 X. H. Zhang and P. B. Ma, "Application of Knitting Structure Textiles in Medical Areas", Autex. Res. J., 2018, 18, 181-191.   DOI
17 G. S. Taylor and J. S. Barnett, "Evaluation of Wearable Simulation Interface for Military Training", Hum. Factors, 2013, 55, 672-690.   DOI
18 S. F. Zopf and M. Manser, "Screen-printed Military Textiles for Wearable Energy Storage", J. Eng. Fiber. Fabr., 2016, 11, 1-8.
19 D. Borro-Yaguez, J. Servan-Blanco, J. M. Cordero-Valle, J. R. Sanchez-Tapia, F. Mas-Morate, and L. Matey-Munoz, "Handsfree Wearable System for Helping in Assembly Tasks in Aerospace", Dyna-Bilbao., 2011, 86, 328-335.
20 K. Cherenack and L. van Pieterson, "Smart Textiles: Challenges and Opportunities", J. Appl. Phys., 2012, 112, 091301.   DOI
21 Y. H. Lee, J. S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T. S. Kim, J. Y. Lee, and J. W. Choi, "Wearable Textile Battery Rechargeable by Solar Energy", Nano Lett., 2013, 13, 5753-5761.   DOI
22 H. H. Cheng, Z. L. Dong, C. G. Hu, Y. Zhao, Y. Hu, L. T. Qu, N. Chen, and L. M. Dai, "Textile Electrodes Woven by Carbon Nanotube-graphene Hybrid Fibers for Flexible Electrochemical Capacitors", Nanoscale, 2013, 5, 3428-3434.   DOI
23 R. F. Service, "Technology-Electronic Textiles Charge Ahead", Science, 2003, 301, 909-911.   DOI
24 G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. N. Bao, "Solution- Processed Graphene/MnO2 Nanostructured Textiles for High- Performance Electrochemical Capacitors", Nano Lett., 2011, 11, 2905-2911.   DOI