Browse > Article
http://dx.doi.org/10.12772/TSE.2018.55.239

MoO2-decorated TiO2 Nanofiber Composite as Visible-light Photocatalysts and Electrodes for Supercapacitor Applications  

Seo, Su-Jung (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Amna, Touseef (College of Science, Albaha University)
Hassan, M. Shamshi (College of Science, Albaha University)
Kim, Hyun-Chel (School of Integrated Technology & Entrepreneurship, Chungwoon University)
Khil, Myung-Seob (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Publication Information
Textile Science and Engineering / v.55, no.4, 2018 , pp. 239-246 More about this Journal
Abstract
Anchoring zero-dimensional nanoparticles on a one-dimensional nanomaterial is potentially advantageous in many applications. In this work, we successfully synthesized $MoO_2$- decorated $TiO_2$ nanofibers using a hydrothermal method with ethanol as a reducing agent. The samples were characterized by XRD, SEM-EDX, EPMA, Raman spectroscopy, and FT-IR. The samples were investigated for visible-light photocatalytic activity using methylene blue as a model dye. The novel $MoO_2$-decorated $TiO_2$ composite showed remarkably enhanced performance compared to pristine $MoO_2$ and $TiO_2$. The $MoO_2$-decorated $TiO_2$ composite also exhibited higher electrochemical capacitance than the pristine samples as electrode materials for supercapacitors. The obtained high photocatalytic activity and supercapacitance can be attributed to the synergistic effects between the $MoO_2$ nanoparticles and $TiO_2$ nanofibers. A maximum specific capacitance of $245.1Fg^{-1}$, measured by cyclic voltammetry at a scan rate of 2 mV/s, was achieved in a $1M\;H_2SO_4$ aqueous solution. The electrochemical performances of pure $MoO_2$ nanoparticles were significantly improved after adding $TiO_2$ nanofibers. These results suggest the applicability of the $MoO_2$-decorated $TiO_2$ hierarchical design for the removal of chemical pollutants and as electrode materials for supercapacitors.
Keywords
$MoO_2$-decorated $TiO_2$; heterostructures; supercapacitor; electrospinning; nanofibers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. S. Raut, G. P. Patil, P. G. Chavan, and B. R. Sankapal, "Vertically Aligned $TiO_2$ Nanotubes: Highly Stable Electrochemical Supercapacitor", J. Electroanal. Chem., 2016, 780, 197-200.   DOI
2 X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, "Hydrogenated $TiO_2$ Nanotube Arrays for Supercapacitors", Nano Lett., 2012, 12, 1690-1696.   DOI
3 H. Wang, S. Li, D. Li, Z. Chen, H. K. Liu, and Z. Guo, "$TiO_2$ Coated Three-dimensional Hierarchically Ordered Porous Sulfur Electrode for the Lithium/sulfur Rechargeable Batteries", Energy, 2014, 75, 597-602.   DOI
4 W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou, and H. L. Zhang, "Enhanced Field Emission from Hydrogenated $TiO_2$ Nanotube Arrays", Nanotechnology, 2012, 23, 455204.   DOI
5 X. Zhao, C. Johnston, and P. S. Grant, "A Novel Hybrid Supercapacitor with a Carbon Nanotube Cathode and an Iron Oxide/carbon Nanotube Composite Anode", J. Mater. Chem. 2009, 19, 8755-8760.   DOI
6 X. Hu, W. Zhang, X. Liu, Y. Mei, and Y. Huang, "Nanostructured Mo-based Electrode Materials for Electrochemical Energy Storage", Chem. Soc. Rev., 2015, 44, 2376-2404.   DOI
7 Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, "Ordered Mesoporous Metallic $MoO_2$ Materials with Highly Reversible Lithium Storage Capacity", Nano Lett., 2009, 9, 4215-4220.   DOI
8 K. M. Hercule, Q. Wei, A. M. Khan, Y. Zhao, X. Tian, and L. Mai, "Synergistic Effect of Hierarchical Nanostructured $MoO_2/Co(OH)_2$ with Largely Enhanced Pseudocapacitor Cyclability", Nano Lett., 2013, 13, 5685-5691.   DOI
9 S. K. Meher and G. R. Rao, "Ultralayered $Co_3O_4$ for High-Performance Supercapacitor Applications", J. Phys. Chem. C, 2011, 115, 15646-15654.   DOI
10 T. Amna, M. S. Hassan, W. S. Shin, H. Van Ba, H. K. Lee, M. S. Khil, and I. Hwang, "$TiO_2$ Nanorods via One-step Electrospinning Technique: A Novel Nanomatrix for Mouse Myoblasts Adhesion and Propagation", Colloids and Surfaces B: Biointerfaces, 2013, 101, 424-429.   DOI
11 M. S. Hassan, T. Amna, A. Mishra, S. I. Yun, H. C. Kim, H. Y. Kim, and M. S. Khil, "Fabrication, Characterization and Antibacterial Effect of Novel Electrospun $TiO_2$ Nanorods on a Panel of Pathogenic Bacteria", J. Biomed. Nanotechnol., 2012, 8, 394-404.   DOI
12 Z. Xiang, Q. Zhang, X. Xu, and Q. Wang, "Preparation and Photoelectric Properties of Semiconductor $MoO_2$ Micro/nanospheres with Wide Bandgap", Ceramics International, 2015, 41, 977-981.   DOI
13 J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, "The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of $TiO_2$ Thin Films Prepared by Liquid Phase Deposition", J. Phys. Chem. B, 2003, 107, 13871-13879.   DOI
14 Z. Li and H. C. Zeng, "Armored MOFs: Enforcing Soft Microporous MOF Nanocrystals with Hard Mesoporous Silica", J. Am. Chem. Soc., 2014, 136, 5631-5639.   DOI
15 T. Xia, Q. Li, X. Liu, J. Meng, and X. Cao, “Morphology-Controllable Synthesis and Characterization of Single-Crystal Molybdenum Trioxide”, J. Phys. Chem. B, 2006, 110, 2006-2012.   DOI
16 A. Suzuki, K. Kobayashi, T. Oku, and K. Kikuchi, "Fabrication and Characterization of Porphyrin Dye-sensitized Solar Cells", Mater. Chem. Phys., 2011, 129, 236-241.   DOI
17 J. Zang, S. J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, C. Q. Sun, J. Guo, and K. Lian, "Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/$RuO_2$ and Its Electrochemical Supercapacitor", J. Phys. Chem. C, 2008, 112, 14843-14847.
18 W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, "Raman Scattering Study on anatase $TiO_2$ Nanocrystals", J. Phys. D: Appl. Phys., 2000, 33, 912-916.   DOI
19 N. Li, Y. Li, G. Sun, Y. Ma, T. Chang, S. Ji, H. Yao, X. Cao, S. Bao, and P. Jin, "Selective and Tunable Near-Infrared and Visible Light Transmittance of $MoO_{3-X}$ Nanocomposites with Different Crysatllinity", Chem. Asian J., 2017, 12, 1709-1714.   DOI
20 T. P. Gujar, W.-Y. Kim, I. Puspitasari, K.-D. Jung, and O.-S. Joo, "Electrochemically Deposited Nanograin Ruthenium Oxide as a Pseudocapacitive Electrode", Int. J. Electrochem. Sci., 2007, 2, 666-673.
21 X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductorbased Photocatalytic Hydrogen Generation", Chem. Rev., 2010, 110, 6503-6570.   DOI
22 T. Brezesinski, J. Wang, J. Polleux, B. Dunn, and S. H. Tolbert, "Templated Nanocrystal-Based Porous $TiO_2$ Films for Next Generation Electrochemical Capacitors", J. Am. Chem. Soc., 2009, 131, 1802-1809.   DOI
23 R. Liu, W.-D. Yang, L.-S. Qiang, and H.-Y. Liu, "Conveniently Fabricated Heterojunction ZnO/$TiO_2$ Electrodes Using $TiO_2$ Nanotube Arrays for Dye-sensitized Solar Cells", J. Power Source, 2012, 220, 153-159.   DOI
24 J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. S. Gu, and Y. Zhang, "Structure and Photocatalytic Activity of Ni-doped ZnO Nanorods", Mater. Res. Bull., 2011, 46, 1207-1210.   DOI
25 M. Wang, J. Han, Y. Hu, R. Guo, and Y. Yin, "Carbon-Incorporated NiO/$TiO_2$ Mesoporous Shells with p-n Heterojunctions for Efficient Visible Light Photocatalysis", ACS Appl. Mater. Interfaces, 2016, 8, 29511-29521.   DOI
26 W. Liu, J. Cai, and Z. Li, "Self-Assembly of Semiconductor Nanopaticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis", ACS Sus. Chem. Eng., 2015, 3, 277-282.   DOI
27 C. C. Hu, K. H. Chang, M.-C. Lin, and Y. T. Wu, "Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous $RuO_2$ for Next Generation Supercapacitors", Nano Lett., 2006, 6, 2690-2695.   DOI
28 W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, "$Ag_2O$/ $TiO_2$ Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity", ACS Appl. Mater. Interfaces, 2010, 2, 2385-2392.   DOI
29 Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, and S.-F. Yin, "$Cu_{2}O/BiVO_{4}$Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr(VI) under Visible Light", Chem. Eng. J., 2014, 255, 394-402.   DOI
30 Y. Zhang, Y. Xie, J. Li, T. Bai, and J. Wang, "Photocatalytic Activity and Adsorption Performance of $p-CuBi_2O_4$/n-$TiO_2$ p-n Heterojunction Composites Prepared by in situ Sol-gel Coating Method", J. Sol-Gel Sci. Technol., 2014, 71, 38-42.   DOI
31 W. Lu, L. Qu, K. Henry, and L. Dai, “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes”, J. Power Sources, 2009, 189, 1270-1277.   DOI
32 A. K. Shukla, S. Sampath, and K. Vijayamohanan, “Elec-Trochemical Supercapacitors: Energy Storate Beyond Batteries”, Current Science, 2000, 79, 1656-1661.
33 P. Wang, H. Liu, Q. Tan, and J. Yang, "Ruthenium Oxide-based Nanocomposites with High Specific Surface Area and Improved Capacitance as a Supercapacitor", RSC Adv., 2014, 4, 42839-42845.   DOI
34 P. F. Wang, H. Liu, Y. X. Xu, Y. F. Chen, J. Yang, and Q. Q. Tan, "Supported Ultrafine Ruthenium Oxides with Specific Capacitance Up to 1099 $Fg^{-1}$ for a Supercapacitor", Electrochim. Acta, 2016, 194, 211-218.   DOI
35 B. Pal, B. L. Vijayan, S. G. Krishnan, M. Harilal, W. J. Basirun, A. Lowe, M. M. Yusoff, and R. Jose, "Hydrothermal Syntheses of Tungsten Doped $TiO_2$ and $TiO_2/WO_3$ Composite Using Metal Oxide Precursors for Charge Storage Applications", J. Alloys and Compounds, 2018, 740, 703-710.   DOI
36 P. Prasannalakshmi, N. Shanmugam, and A. S. Kumar, "Electrochemistry of $TiO_2$/CdS Composite Electrodes for Supercapacitor Applications", J. Appl. Electrochem., 2017, 47, 889-903.   DOI