Browse > Article
http://dx.doi.org/10.12772/TSE.2018.55.221

Effects of Backbone Chemical Structure on Characteristics of Supramolecular Polymers Based on Hydrogen Bonding  

Jang, Soon Ho (Department of Organic and Nano Engineering, Hanyang University)
Lee, Junhaeng (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University)
Chung, Jae Woo (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University)
Kim, Seong Hun (Department of Organic and Nano Engineering, Hanyang University)
Publication Information
Textile Science and Engineering / v.55, no.4, 2018 , pp. 221-230 More about this Journal
Abstract
In this study, the effects of a backbone chemical structure on the characteristics of supramolecular polymers based on 2-ureido-4[1H]-pyrimidinone (UPy) moiety with quadruple hydrogen bonding were investigated. The supramolecular polymers were easily synthesized via a UPy moiety functionalized oligomer with a molar mass of approximately 3,000 g/mol. The oligomers selected to form the supramolecular polymers included polytetramethylene glycol (PTMG), polycaprolactone diol (PCL), and polycarbonate diol (PC). The characteristics of the UPy moiety functionalized oligomer are highly dependent on the mobility of the backbone and the existence of the UPy cluster, which is formed by stacking between adjacent UPy dimers. The PC-based supramolecular polymers yielded higher UPy stacked crystals (induced by the UPy cluster) than the PTMG and PCL-based supramolecular polymers.
Keywords
supramolecular polymers; hydrogen bonding; 2-ureido-4[1H]-pyrimidinone (UPy);
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Haiso and Y. J. Chen, "Structure-Property Study of Polyimides Derived from PMDA and BPDA Dianhydrides with Structurally Different Diamines", Eur. Polym. J., 2002, 38, 815-828.   DOI
2 A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, "Thermoplastic Polyurethane Elastomers Based on Polycarbonate Diols with Different Soft Segment Molecular Weight and Chemical Structure: Mechanical and Thermal Propertier", Polym. Eng. Sci., 2008, 48, 297-306.   DOI
3 J. S. Choi and S. Y. Kwak, "Synthesis and Characterization of Hyperbranched Poly(${\epsilon}$-caprolactone)s Having Different Lengths of Homologous Backbone Segments", Macromolecules, 2003, 36, 8630-8637.   DOI
4 B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. van der Rijt, and E. W. Meijer, "Supramolecular Polymer Materials: Chain Extension of Telechelic Using a Reative Hydrogen-Bonding Synthon", Adv. Mater., 2000, 12, 874-878.   DOI
5 D. J. M. van Beek, A. J. H. Spiering, G. W. M. Peters, K. te Nijenhuis, and R. P. Sijbesma, “Unidirectional Dimerization and Stacking of Ureidopyrimidinone End Groups in Polycaprolactone Supramolecular Polymers”, Macromolecules, 2007, 40, 8464-8475.   DOI
6 N. E. Botterhuis, D. J. M. van Beek, G. M. L. van Gemert, A. W. Bosman, and R. P. Sijbesma, "Self-Assembly and Morphology of Polydimethysiloxane Supramolecular Thermoplastic Elastomers", J. Polym. Sci.: Part A: Polym. Chem., 2008, 46, 3877-3885.   DOI
7 W. P. Appel, G. Portale, E. Wisse, P. Y. W. Dankers, and E. W. Meijer, “Aggregation of Ureido-Pyrimidinone Supramolecular Thermoplastic Elastomers into Nanofibers: A Kinetic Analysis”, Macromolecules, 2011, 44, 6776-6784.   DOI
8 M. Wei, M. Zhan, D. Yu, H. Xie, M. He, K. Yang, and Y. Wang, "Novel Poly(tetramethylene ether)glycol and Poly(${\epsilon}$-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity", ACS Appl. Mater. Interfaces, 2015, 7, 2585-2596.   DOI
9 S. M. Kim, S. Park, S. Y. Hwang, E. S. Kim, J. G. Jegal, C. G. Im, H. Y. Jeon, D. X. Oh, and J. Y. Park, “Enviromentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes”, Polymers, 2017, 9, 663-678.   DOI
10 L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, "Supramolecular Polymers", Chem. Rev., 2001, 101, 4071-4097.   DOI
11 T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, and E. W. Meijer, "Supramolecular Polymerization", Chem. Rev., 2009, 109, 5687-5754.   DOI
12 L. Yang, X. Tan, Z. Wang, and X. Zhang, "Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions", Chem. Rev., 2015, 115, 7196-7239.   DOI
13 S. Y. Yang and Y. J. An, "Studies of the Supramolecular Complexes for Various Applications", Polym. Sci. Tech., 2012, 23, 39-46.
14 J. W. Chung, "Supramolecular Network Self-Healing Polymer", Polym. Sci. Tech., 2014, 25, 128-134.
15 P. Cordier, F. Tournilhac, C. S. Ziakovic, and L. Leibler, “Self-Healing and Thermoreversible Rubber from Supramolecular Assembly”, Nature, 2008, 451, 977-980.   DOI
16 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, “Autonomic Healing of Polymer Composites”, Nature, 2001, 409, 794-797.   DOI
17 K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, "Self-Healing Materials with Microvascular Networks", Nature Mater., 2007, 6, 581-585.   DOI
18 M. D. Hanger, P. Greil, C. Leyens, S. van der Zwaag, and U. S. Schubert, "Self-Healing Materials", Adv. Mater., 2010, 22, 5424-5430.   DOI
19 Y. L. Liu and Y. W. Chen, "Thermally Reversible Cross-Linked Polyamides with High Toughness and Self-Repairing Ability from Maleinide and Furan-Functionalized Aromatic Polyamides", Macromol. Chem. Phys., 2007, 208, 224-232.   DOI
20 X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, “A Thermally Re-mendable Cross-Linked Polymeric Material”, Science, 2002, 295, 1698-1702.   DOI
21 Y. S. Ryu, K. W. Oh, and S. H. Kim, "Synthesis and Characterization of a Furan-Based Self-Healing Polymers", Macromol. Res., 2016, 24, 874-880.   DOI
22 A. K. Sharma, M. Caricato, E. Quartarone, S. Edizer, A. G. Schieroni, R. Mendichi, and D. Pasini, "Polystyrene-based Self-Aggregating Polymers Based on UPy Units", Polym. Bull., 2012, 69, 911-923.   DOI
23 J. Zhang, M. Huo, M. Li, T. Li, N. Li, and J. Zhou, “Shape Memory and Self-Healing Materials from Supramolecular Block Polymers”, Polymer, 2018, 134, 35-43.   DOI
24 P. Shokrollahi, H. Mirzadeh, W. T. S. Huck, and A. Scherman, “Effect of Self-Complementary Motifs on Phase Compatibility and Material Properties in Blends of Supramolecular Polymers”, Polymer, 2010, 51, 6303-6312.   DOI
25 B. Zhu, Z. Feng, Z. Zheng, and X. Wang, "Thermoreversible Supramolecular Polyurethanes with Self-Complementary Quadruple Hydrogen-Bonded End Groups", J. Appl. Polym. Sci., 2012, 123, 1755-1763.   DOI
26 Y. J. Kim, P. H. Huh, and B. K. Kim, "Synthesis of Self-Healing Polyurethane Urea-Based Supramolecular Materials", J. Appl. Polym. Sci., Part B: Polym. Phys., 2015, 53, 468-474.