Browse > Article
http://dx.doi.org/10.12772/TSE.2018.55.071

Preparation and Properties of PVA Composites Containing Homogeneously Dispersed MWNTs  

Chae, Dong Wook (Department of Textile Engineering, Kyungpook National University)
Hawkins, Stephen C. (School of Mechanical and Aerospace Engineering, Queen's University Belfast)
Huynh, Chi (Lintec of America, Inc., R&D Division Nano-Science and Technology Center)
Publication Information
Textile Science and Engineering / v.55, no.2, 2018 , pp. 71-77 More about this Journal
Abstract
This paper presents a novel and versatile fabrication method for the preparation of poly(vinyl alcohol) (PVA) composites containing completely dispersed multi-walled carbon nanotubes (MWNTs). Prior to mixing with PVA, the MWNTs were debundled by mixing with sugar syrup. The predispersed MWNTs were washed with water and filtered to remove the sugar syrup. Subsequently, they were mixed with PVA in water, followed by a solution casting process. Microscopic images of the PVA composites revealed that the dispersion was significantly better than those prepared with crude nanotubes. The dynamic viscosity of the PVA solutions increased as the MWNT content increased. Specifically, an abrupt increase in the yield stress was observed in the Casson plot with MWNT content between 5 and 10 wt%. Up to 1 wt% MWNT loading, there was no noticeable effect in the thermal stability, while further addition lowered the degradation temperature. The stress-strain curves showed a more pronounced yield and post-yield drop with increasing MWNT content up to 1 wt% loading, whereas further addition of MWNTs weakened the yield behavior. At only 1 wt% loading, the yield strength corresponded to the breaking strength. The tensile strength and the modulus of the PVA composites increased up to 1 wt% nanotube loading and decreased at higher nanotube contents. In addition, the elongation at break of the PVA composites decreased at a nanotube loading of ${\geq}0.5wt%$.
Keywords
Poly(vinyl alcohol); Multi-walled carbon nanotubes; Dispersion; Dynamic viscosity; Stress-strain curve;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Blond, V. Barron, M. Ruether, K. P. Ryan, V. Nicolosi, W. J. Blau, and J. N. Coleman, "Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-based Com-posites by the Incorporation of Poly(methyl methacrylate)- Functionalized Nanotubes", Adv. Funct. Mater., 2006, 16, 1608-1614.   DOI
2 E. Munoz, D. S. Suh, S. Collins, M. Selvidge, A. B. Dalton, B. G. Kim, J. M. Razal, G. Ussery, A. G. Rinzler, M. T. Martinez, and R. H. Baughman, "Highly Conducting Carbon Nanotube/ Polyethyleneimine Composite Fibers", Adv. Mater., 2005, 17, 1064-1067.   DOI
3 J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gunko, "Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-polymer Composites", Carbon, 2006, 44, 1624- 1652.   DOI
4 H. C. Kuan, C. M. Ma, W. Chang, S. Yuen, H. Wu, and T. Lee, "Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/waterborne Polyurethane Nanocomposite", Compos. Sci. Technol., 2005, 65, 1703-1710.   DOI
5 J. Xiong, Z. Zheng, X. Qin, M. Ki, H. Li, and X. Wang, "The Thermal and Mechanical Properties of a Polyurethane/multi- walled Carbon Nanotube Composite", Carbon, 2006, 44, 2701-2707.   DOI
6 M. Sano, A. Kamino, J. Okamura, and S. Shinkai, "Self- Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir−Blodgett Films", Langmuir, 2001, 17, 5125-5128.   DOI
7 B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, "Improved Structure and Properties of Single-wall Carbon Nanotube Spun Fibers", Appl. Phys. Lett., 2002, 81, 1210.   DOI
8 J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, "Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization", Nano Lett., 2003, 3, 1107-1113.   DOI
9 Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, "Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/epoxy Composites", Carbon, 2005, 43, 23-30.   DOI
10 D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, "Soluble Carbon Nanotubes", Chem. Eur. J., 2003, 9, 4000-4008.   DOI
11 R. Cyrille, F. Balavoine, P. Schultz, E. W. Thomas, and C. Mioskowski, "Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes", Science, 2003, 300, 775-778.   DOI
12 M. S. P. Shaffer and A. H. Windle, "Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites", Adv. Mater., 2002, 11, 937-941.
13 M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, "Morphological and Mechanical Properties of Carbon- nanotube-reinforced Semicrystalline and Amorphous Polymer Composites", Appl. Phys. Lett., 2002, 81, 5123-5125.   DOI
14 Y. Lin, B. Zhou, K. A. S. Fernando, P. Liu, L. F. Allard, and Y. P. Sun, "Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer", Macromolecules, 2003, 36, 7199-7204.   DOI
15 L. Liu, A. H. Barber, S. Nuriel, and H. D. Wagner, "Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/ Poly(vinyl alcohol) Nanocomposites", Adv. Funct. Mater., 2004, 15, 975-980.
16 W. Chen, X. Tao, P. Xue, and X. Cheng, "Enhanced Mechanical Properties and Morphological Characterizations of Poly(vinyl alcohol)-carbon Nanotube Composite Films", Appl. Surf. Sci., 2005, 252, 1404-1409.   DOI
17 Y. Bin, M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo, "Morphology and Mechanical and Electrical Properties of Oriented PVA-VGCF and PVA-MWNT Composites", Polymer, 2006, 47, 1308-1317.   DOI
18 S. Bhattacharyya, J. P. Salvetat, and M. L. Saboungi, "Reinforcement of Semicrystalline Polymer with Collagen- modified Single Walled Carbon Nanotubes", Appl. Phys. Lett., 2006, 88, 2331191.
19 J. Wongon, S. Thumsorn, and N. Srisawat, "Poly(vinyl alcohol)/ Multiwalled Carbon Nanotubes Composite Nanofiber", Energy Procedia, 2016, 89, 313-317.   DOI
20 Z. Yang, D. Xu, J. Liu, J. Liu, L. Li, L. Zhang, and J. Lv, "Fabrication and Characterization of Poly(vinyl alcohol)/ Carbon Nanotube Melt-spinning Composites Fiber", Prog. Nat. Sci. Mater., 2015, 25, 437-444.   DOI
21 S. A. M. Escobar, C. A. I. Merino, and J. M. M. Meza, "Mechanical and Thermal Behavior of Polyvinyl Alcohol Reinforced with Aligned Carbon Nanotubes", Revista Materia, 2015, 20, 794-802.   DOI
22 P. Zhang, D. Qiu, H. Chen, J. Sun, J. Wang, C. Qin, and L. Dai, "Preparation of MWCNTs Grafted with Polyvinylalcohol through Friedel-Crafts Alkylation and Their Composite Fibers with Enhanced Mechanical Properties", J. Mater. Chem. A, 2015, 3, 1442-1449.   DOI
23 J. Bae, S. Lee, B. C. Kim, H. H. Cho, and D. W. Chae, "Polyester-based Thermoplastic Elastomer/MWNT Composites: Rheological, Thermal, and Electrical Properties", Fiber. Polym., 2013, 14, 729-735.   DOI
24 W. S. Bae, O. J. Kwon, B. C. Kim, and D. W. Chae, "Effects of Multi-walled Carbon Nanotubes on Rheological and Physical Properties of Polyamide-based Thermoplastic Elastomers", Korea-Aust. Rheol. J., 2012, 24, 221-227.   DOI
25 N. Casson in "Rheology of Disperse Systems" (C. C. Mills Ed.), Pergamon Press, New York, 1959, pp.84-102.