Browse > Article
http://dx.doi.org/10.12772/TSE.2017.54.109

Fine Structure and Physical Properties of Graphene/Poly(vinylidene fluoride-co-hexafluoropropylene) Composite Films Prepared under Various Drawing Conditions  

Kim, Hyelim (Research Institute of Convergence Design, Dong-A University)
Lee, Sunhee (Department of Fashion Design, Dong-A University)
Publication Information
Textile Science and Engineering / v.54, no.2, 2017 , pp. 109-115 More about this Journal
Abstract
Graphene/poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) composite films were prepared by the solution casting method. The resultant 2 wt% graphene/ PVDF-HFP composite films were uniaxially drawn at $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$. Investigation of the surface morphology of these films confirmed that the orientation of the polymer matrix. The XRD results showed ${\alpha}$-phase crystals. With increasing drawing temperature, the (002) reflections of graphene decreased and the (100) and (020) planes of the ${\alpha}$-phase of PVDF-HFP increased. DSC thermograms indicated no change in the melting temperature but a slight increase in crystallinity with increasing drawing temperatures. The surface resistivity of the graphene/PVDF-HFP composite films in the case of $75^{\circ}C$ drawing temperature were slightly lower than those in the case of the other two temperatures.
Keywords
graphene; poly(vinylidene fluoride-co-hexafluoropropylene); crystal structure; electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Lee, J. M. Youn, J. Kwon, and S. W. Kim, "Tailored Assembly of Graphene from Solvent Dispersion", Polym. Sci. Tech., 2011, 22, 130-136.
2 J. Molina, "Graphene-based Fabrics and Their Applications: A Review", RSC Adv., 2016, 6, 68261-68291.   DOI
3 X. Ji, Y. Xu, W. Zhang, L. Cui, and J. Liu, "Review of Functionalization, Structure and Properties of Graphene/ polymer Composite Fibers", Composites: Part A, 2016, 87, 29-45.   DOI
4 J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao, and W. Xu, "Polypyrrole/reduced Graphene Oxide Coated Fabric Electrodes for Supercapacitor Application", Organic Electronics, 2015, 24, 153-159.   DOI
5 C. Zhao, K. Shu, C. Wang, S. Gambhir, and G. G. Wallace, "Reduced Graphene Oxide and Polypyrrole/reduced Graphene Oxide Composite Coated Strechable Fabric Electrodes for Supercapacitor Application", Electrochinica Acta, 2015, 172, 12-19.   DOI
6 F. Meng, W. Lu, Q. Li, J. H. Byun, Y. S. Oh, and T. W. Chou, "Graphene-Based Fibers: A Review", Materials Views, 2015, 27, 5133-5131.
7 Y. J. Yun, W. G. Hong, W. J. Kim, Y. S. Jun, and B. H. Kim, "A Novel Method for Applying Reduced Graphene Oxide Directly to Electronic Textiles from Yarns to Fabrics", Adv. Mater., 2013, 25, 5701-5705.   DOI
8 Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, and R. B. Kaner, "Graphene-based Materials for Flexible Supercapacitors", Chem. Soc. Rev., 2015, 44, 3639-3665.   DOI
9 S. M. Seidel, S. Jeschke, P. Vettikuzha, and H.-D. Wiemhofer, "PVDF-HFP/ether-modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries", Chem. Commum., 2015, 51, 12048-12051.   DOI
10 K. B. M. Isa, Z. Osman, A. K. Arof, L. Othman, N. H. Zainol, S. M. Samin, W. G. Chong, and N. Kamarulzaman, "Lithium Ion Conduction and Ion-polymer Interaction in PVdF-HFP Based Gel Polymer Electrolytes", Solid State Ionincs, 2014, 268, 288-293.   DOI
11 S. H. Lee, "Carbon Nanofiber/Poly(vinylidene fluoridehexafluoro propylene) Composite Films : The Crystal Structure and Thermal Properties with Various Drawing Temperatures", Fiber. Polym., 2013, 14, 441-446.   DOI
12 L. Wu, W. Yuan, N. Hu, Z. Wang, C. Chen, J. Qiu, J. Ying, and Y. Li, "Improved Piezoelectricity of PVDF-HFP/carbon Black Composite Films", J. Phys. D. Appl. Phys., 2014, 47, 135302-135310.   DOI
13 P. Kumar, S. Yu, F. Shahzad, S. M. Hong, Y. H. Kim, and C. M. Koo, "Ultrahigh Electrically and Thermally Conductive Selfaligned Graphene/polymer Composites Using Large-area Reduced Graphene Oxides", Carbon, 2016, 101, 120-128.   DOI
14 W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P. K. Chu, B. Shen, and Z. Zhang, "Novel Method for the Fabrication of Flexible Film with Oriented Arrays of Graphene in Poly(vinylidene fluoride-co-hexafluoropropylene) with Low Dielectric Loss", J. Phys. Chem., 2014, 118, 10567-10573.
15 Alamusi, J. M. Xue, L. K. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe, H. Fukunaga, T. Watanabe, Y. L. Liu, H. M. Ning, J. H. Li, Y. Li, and Y. Zhao, "Evaluation of Piezoelectric Property of Reduced Graphene Oxide (rGO)-poly(vinylidene fluoride) Nanocomposites", Nanoscale, 2012, 4, 7250-7255.   DOI
16 Y. Choi, K. Zhang, K. Y. Chung, D. H. Wang, and H. Park, "PVdF-HFP/exfoliated Graphene Oxide Nanosheet Hybrid Separators for Thermally Stable Li-ion Batteries", RSC Adv., 2016, 6, 80706-80711.   DOI
17 M. A. Rahman, B. C. Lee, D. T. Phan, and G. S. Chung, "Fabrication and Characterization of Highly Efficient Flexible Energy Harvesters Using PVDF-graphene Nanocomposites", Smart Mater. Struct., 2013, 22, 085017-085026.   DOI
18 L. Wu, Alamusi, J. Xue, T. Itio, N. Hu, Y. Li, C. Yan, J. Qiu, H. Ning, W. Yuan, and B. Gu, "Improved Energy Harvesting Capability of Poly(vinylidene fluoride) Films Modified by Reduced Graphene Oxide", J. Int. Mat. Sys. Struct., 2014, 25, 1813-1824.   DOI
19 K. Cai, S. Zuo, S. Luo, C. Yao, W. Liu, J. Ma, H. Mao, and Z. Li, "Preparation of Polyaniine/graphene Composites with Excellent Anti-corrosion Properties and Their Application in Waterborne Polyurethane Anticorrosive Coatings", RSC Adv., 2016, 6, 95965-95972.   DOI