Browse > Article
http://dx.doi.org/10.12772/TSE.2017.54.066

Fabrication of Metal-organic Frameworks Using an Photoisomerizable Azobenzene Ligand  

Yoon, Yeoju (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Jang, Geunseok (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Lee, Taek Seung (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Textile Science and Engineering / v.54, no.1, 2017 , pp. 66-71 More about this Journal
Abstract
Metal-organic frameworks (MOFs) were prepared by a reaction of 4,4'-(diazene-1,2-diyl)dibenzoic acid (AzDC) as organic ligand and metal ions including zinc, iron (III), copper, and cobalt ions, respectively. Because the synthesized AzDC contained azobenzene and carboxylic acids groups at each ends, it showed trans-to-cis photoisomerization upon UV irradiation and interaction with metal ions, respectively. The AzDC showed more efficient photoisomerization upon exposure to UV light (365 nm), rather than UV light at 254 nm, mainly due to the larger absorption around 365 nm than 254 nm. The isomerization of cis-to-trans azobenzene was observed under ambient light. The resultant MOFs containing AzDC ligand showed photo-triggered conversion of trans- to cis-azobenzene after exposure to UV light. Thus, the porous structure and photo-induced dimensional deformation of the MOFs enable to use in chemical sensing, gas separation, gas storage, catalysis, and drug delivery.
Keywords
metal-organic frameworks; photoisomerism; azobenzene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Zhang, J. Ma, X. Zhang, E. Duan, and P. Cheng, "Assembly of Metal-Organic Frameworks Based on 3,3',5,5'-azobenzenetetracarboxylic acid: Photoluminescences, Magnetic Properties, and Gas Separations", Inorg. Chem., 2015, 54, 586-595.   DOI
2 R. Kroger, H. Menzel, and M. L. Hallensleben, "Light Controlled Solubility Change of Polymers: Copolymers of N,N-dimethylacrylamide and 4-Phenylazophenyl Acrylate", Macromol. Chem. Phys., 1994, 195, 2291-2298.   DOI
3 S. Khanjani and A. Morsali, "Ultrasound-Promoted Coating of MOF-5 on Silk Fiber and Study of Adsorptive Removal and Recovery of Hazardous Anionic Dye "Congo Red"", Ultrasonics Sonochem., 2014, 21, 1424-1429.   DOI
4 S. T. Meek, J. A. Greathouse, and M. D. Allendorf, "Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials", Adv. Mater., 2011, 23, 249-267.   DOI
5 J. Y. Choi, J. Kim, S. H. Jhung, H. K. Kim, J. S. Chang, and H. K. Chae, "Microwave Synthesis of a Porous Metal-Organic Framework, Zinc Terephthalate MOF-5", Bull. Korean Chem. Soc., 2006, 27, 1523-1524.   DOI
6 G. Abellan, H. Garcia, C. J. Gomez-Garcia, and A. Ribera, "Photochemical Behavior in Azobenzene Having Acidic Groups. Preparation of Magnetic Photoresponsive Gels", J. Photochem. Photobio. A: Chem., 2011, 217, 157-163.   DOI
7 T. Nägele, R. Hoche, W. Zinth, and J. Wachtveitl, "Femtosecond Photoisomerization of Cis-Azobenzene", Chem. Phys. Lett., 1997, 272, 489-495.   DOI
8 H. Sell, C. Näther, and R. Herges, "Amino-Substituted Diazocines as Pincer-Type Photochromic Switches", Org. Chem., 2013, 9, 1-7.
9 I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, "Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of Trans-Azobenzene in Solution", Phys. Chem., 1996, 100, 13338-13341.   DOI
10 I. K. Lednev, T.-Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, "Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of Trans-Azobenzene: Dependence on Excitation Wavelength", Chem. Phys. Lett., 1998, 290, 68-74.   DOI
11 P. Ahonen, D. J. Schiffrin, J. Paprotnyb, and K. Kontturi, "Optical Switching of Coupled Plasmons of Ag-Nanoparticles by Photoisomerisation of an Azobenzene Ligand", Phys. Chem. Chem. Phys., 2007, 9, 651-658.   DOI
12 I. Mita, K. Horie, and K. Hirao, "Photochemistry in Polymer Solids. 9. Photoisomerization of Azobenzene in a Polycarbonate Film", Macromolecules, 1989, 22, 558-563.   DOI
13 Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Brase, K. Reuterb, and C. Wolla, "Photoswitching in Nanoporous, Crystalline Solids: An Experimental and Theoretical Study for Azobenzene Linkers Incorporated in MOFs", Phys. Chem. Chem. Phys., 2015, 17, 14582-14587.   DOI
14 N. Stock and S. Biswas, "Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites", Chem. Rev., 2012, 112, 933-969.   DOI
15 V. H. Nguyen, N. P. T. Nguyen, T. T. N. Nguyen, T. T. T. Le, V. N. Le, Q. C. Nguyen, T. Q. Ton, T. H. Nguyen, and T. P. T. Nguyen, "Synthesis and Characterization of Zinc-Organic Frameworks with 1,4-benzenedicarboxylic Acid and azobenzene-4,4'-dicarboxylic Acid", Adv. Nat. Sci.: Nanosci. Nanotechnol., 2011, 2, 025008.   DOI
16 A. Schaate, S. Duhnen, G. Platz, S. Lilienthal, A. M. Schneider, and P. Behrens, "A Novel Zr-Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as a Linker", Eur. J. Inorg. Chem., 2012, 790-796.
17 R. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, C. J. Kepert, and M. R. Hill, "Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release", Angew. Chem. Int. Ed., 2013, 52, 3695-3698.   DOI
18 J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. Fraser Stoddart, and O. M. Yaghi, "Photophysical Pore Control in an Azobenzene Containing Metal-Organic Framework", Chem. Sci., 2013, 4, 2858-2864.   DOI