Browse > Article
http://dx.doi.org/10.12772/TSE.2017.54.001

Humidity Sensors Based on Titanium Oxide/Polyvinyl Alcohol Composite Nanofibers via Electrospinning  

Jeong, Yu Kyung (Department of Organic Material Science and Engineering, Pusan National University)
Choi, Sejin (Department of Organic Material Science and Engineering, Pusan National University)
Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.54, no.1, 2017 , pp. 1-7 More about this Journal
Abstract
In this study, titanium oxide($TiO_2$)/polyvinyl alcohol(PVA) electrospun composite nanofibers were used as a humidity sensing layer. The electrospinning behavior was observed to investigate the influence of different concentrations of $TiO_2$. In order to secure the structural stability of the sensing layer, which was dissolved under conditions of high humidity, the PVA-based sensing layer was crystallized at $180^{\circ}C$. The humidity sensing properties, including the impedance versus relative humidity and response-recovery time, were found to improve because of the structural advantage of the fiber-shaped sensing layer and the hydrophillic inorganic particles. Furthermore, The humidity sensing mechanism could be elucidated via the complex impedance plots and corresponding equivalent circuit.
Keywords
humidity sensing; composite nanofiber; electrospinning; $TiO_2$; PVA; complex impedance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Cramariuc, R. Cramariuc, R. Scarlet, L. R. Manea, I. G. Lupu, and O. Cramariuc, "Fiber Diameter in Electrospinning Process", J. Electrostat., 2013, 71, 189-198.   DOI
2 D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, "Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning", J. Appl. Phys., 2000, 87, 4531-4547.   DOI
3 A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Bending Instability in Electrospinning of Nanofibers", J. Appl. Phys., 2001, 89, 3018-3026.   DOI
4 S. J. Choi, C. S. Kong, D. H. Han, and H. S. Kim, "Online Measurement of Electrospinning Jet Velocity of Polyvinyl Alcohol", Int. Polym. Proc., 2016, 31, 285-291.   DOI
5 J. Ding, Z. Lu, R. Wang, G. Shen, and L. Xiao, "Piezoelectric Immunosensor with Gold Nanoparticles Enhanced Competitive Immunoreaction Technique for 2,4-dichlorophenoxyacetic Acid Quantification", Sensor. Actuat. B-Chem., 2014, 193, 568-573.   DOI
6 Y. Li, C. Deng, and M. Yang, "A Novel Surface Acoustic Waveimpedance Humidity Sensor Based on the Composite of Polyaniline and Poly(vinyl alcohol) with a Capability of Detecting Low Humidity", Sensor. Actuat. B-Chem., 2012, 165, 7-12.   DOI
7 M. V. Kulkarni, S. K. Apte, S. D. Naik, J. D. Ambekar, and B. B. Kale, "Ink-jet Printed Conducting Polyaniline Based Flexible Humidity Sensor", Sensor. Actuat. B-Chem., 2013, 178, 140-143.   DOI
8 J. Wang, R. K. Ghosh, and S. K. Das, "A Survey on Sensor Localization", J. Contr. Theor. Appl., 2010, 8, 2-11.   DOI
9 Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, "Graphene Based Electrochemical Sensors and Biosensors: A Review", Electroanal., 2010, 22, 1027-1036.   DOI
10 H. Guohua, M. Shanshan, C. Qingqing, and C. Xing, "Sweet and Bitter Tastant Discrimination from Complex Chemical-mixtures Using Taste Cell-based Sensor", Sensor. Actuat. BChem., 2014, 192, 361-368.   DOI
11 A. I. Buvailo, Y. Xing, J. Hines, N. Dollahon, and E. Borguet, "$TiO_2$/LiCl-Based Nanostructured Thin Film for Humidity Sensor Applications", ACS Appl. Mater. Inter., 2011, 3, 528-533.   DOI
12 Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, "Humidity Sensing Properties of $BaTiO_3$ Nanofiber Prepared via Electrospinning", Sensor. Actuat. B-Chem., 2010, 146, 98-102.   DOI
13 P. M. Faia and C. S. Furtado, "Effect of Composition on Electrical Response to Humidity of $TiO_2$:ZnO Sensors Investigated by Impedance Spectroscopy", Sensor. Actuat. B-Chem., 2013, 181, 720-729.   DOI
14 W. Geng, Q. Yuan, X. Jiang, J. Tu, L. Duan, J. Gu, and Q. Zhang, "Humidity Sensing Mechanism of Mesoporous MgO/KCl-$SiO_2$ Composites Analyzed by Complex Impedance Spectra and Bode Diagrams", Sensor. Actuat. B-Chem., 2012, 174, 513-520.   DOI
15 F. M. Ernsberger, "The NonconformistIon", J. Am. Ceram. Soc., 1983, 66, 747-750.   DOI
16 P. G. Su, W. C. Li, J. Y. Tseng, and C. J. Ho, "Fully Transparent and Flexible Humidity Sensors Fabricated by Layer-by-layer Self-assembly of Thin Film of Poly(2-acrylamido-2-methylpropane sulfonate) and Its Salt Complex", Sensor. Actuat. B-Chem., 2011, 153, 29-36.   DOI
17 P. G. Su and C. C. Shiu, "Electrical and Sensing Properties of a Flexible Humidity Sensor Made of Polyamidoamine Dendrimer-Au Nanoparticles", Sensor. Actuat. B-Chem., 2012, 165, 151-156.   DOI
18 J. H. Anderson and G. A. Parks, "Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water", J. Phys. Chem., 1968, 72, 3662-3668.   DOI
19 S. Liang, X. He, F. Wang, W. Geng, X. Fu, J. Ren, and X. Jiang, "Highly Sensitive Humidity Sensors Based on LiCl-Pebax 2533 Composite Nanofibers via Electrospinning", Sensor. Actuat. B-Chem., 2015, 208, 363-368.   DOI