Browse > Article
http://dx.doi.org/10.12772/TSE.2016.53.328

Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis  

Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University)
Kuk, Hoa-Youn (OE Development Team 3, NEXEN Tire R&D Center)
Lee, Ji-Seok (Department of Organic Material Science and Engineering, Pusan National University)
Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.53, no.5, 2016 , pp. 328-339 More about this Journal
Abstract
The objective of the present study is to phenomenologically characterize the nonlinear rheological behavior of concentrated xanthan gum systems in large amplitude oscillatory shear (LAOS) flow fields by means of stress waveform and Lissajous pattern analysis. Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous xanthan gum solutions with different concentrations has been experimentally investigated in LAOS flow conditions with a various combination of several fixed strain amplitudes and constant angular frequencies. The main findings obtained from this study are summarized as follows: (1) When a sinusoidal deformation with large strain amplitude is applied, a distorted and nonsinusoidal but symmetrical stress response waveform is observed with time. (2) A saw-tooth shaped stress signal detected at large strain amplitudes may arise from a unique microstructure of xanthan polymer chains. A small peak of stress wave appearing at the position of maximum and minimum stress represents a nonlinear viscous nature of concentrated xanthan gum systems in LAOS flow fields. (3) As an increase in polymer concentration, the shape of stress wave becomes sharper and more distorted. This trend may be explained by an increase in structural density. (4) As a decrease in angular frequency, the stress wave exhibits a more distorted shape and both of the maximum and minimum peaks of a saw-tooth shaped stress response becomes more dominant. (5) At relatively small strain amplitudes, the Lissajous patterns (stress versus strain rate loops) show an elliptical form and their normalized ones are coincident with each other. When larger strain amplitudes are applied, however, the Lissajous patterns are noticeably nonelliptical, and moreover, as the strain amplitude is further increased, the tips of loops become more pointed with exhibiting a characteristic "S" shape.
Keywords
concentrated xanthan gum system; nonlinear viscoelastic behavior; large amplitude oscillatory shear (LAOS); stress waveform; Lissajous pattern;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
2 F. Garcia-Ochoa and E. Gomez, "Mass Transfer Coefficient in Stirred Tank Reactors for Xanthan Gum Solutions", Biochem. Eng. J., 1998, 1, 1-10.   DOI
3 J. A. Casas, V. E. Santos, and F. Garcia-Ochoa, "Xanthan Gum Production under Several Operational Conditions : Molecular Structure and Rheological Properties", Enzyme Microb. Technol., 2000, 26, 282-291.   DOI
4 J. S. Lee, Y. S. Kim, and K. W. Song, "Transient Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Start-Up Shear Flow Fields : An Experimental Study Using a Strain-Controlled Rheometer", Korea-Aust. Rheol. J., 2015, 27, 227-239.   DOI
5 J. S. Lee and K. W. Song, "Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields", Korea-Aust. Rheol. J., 2015, 27, 297-307.   DOI
6 K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65.   DOI
7 X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274.   DOI
8 S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25.   DOI
9 K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161.   DOI
10 K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
11 K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758.   DOI
12 K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63.   DOI
13 G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166.   DOI
14 E. K. Park and K. W. Song, "Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations with Respect to Rubbing onto the Human Body", Korea-Aust. Rheol. J., 2010, 22, 279-289.
15 M. S. Kwak, H. J. Ahn, and K. W. Song, "Rheological Investigation of Body Cream and Body Lotion in Actual Application Conditions", Korea-Aust. Rheol. J., 2015, 27, 241-251.   DOI
16 H. S. Melito, C. R. Daubert, and E. A. Foegeding, "Relationships between Nonlinear Viscoelastic Behavior and Rheological, Sensory and Oral Processing Behavior of Commercial Cheese", J. Texture Stud., 2013, 44, 253-288.   DOI
17 J. A. Carmona, P. Ramirez, N. Calero, and J. Munoz, "Large Amplitude Oscillatory Shear of Xanthan Gum Solutions : Effect of Sodium Chloride (NaCl) Concentration", J. Food Eng., 2014, 126, 165-172.   DOI
18 B. T. Stokke, B. E. Christensen, and O. Smidsrod in "Polysaccharides : Structural Diversity and Functional Versatility-Macromolecular Properties of Xanthan", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.433-472.
19 G. Holzwarth and E. B. Prestridge, "Multistranded Helix in Xanthan Polysaccharide", Science, 1977, 197, 757-759.   DOI
20 B. Katzbauer, "Properties and Applications of Xanthan Gum", Polym. Degrad. Stabil., 1998, 59, 81-84.   DOI
21 T. A. Camesano and K. J. Wilkinson, "Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy", Biomacromolecules, 2001, 2, 1184-1191.   DOI
22 K. Ogawa and T. Yui in "Polysaccharides : Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.101-130.
23 K. Born, V. Langendorff, and P. Boulenguer, "Biopolymers", Vol. 5, Wiley-Interscience, New York, 2001.
24 M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja, "Steady Shear and Dynamic Rheological Properties of Xanthan Gum Solutions in Viscous Solvents", J. Rheol., 1999, 43, 627-650.   DOI
25 M. S. Chun, C. Kim, and D. E. Lee, "Conformation and Translational Diffusion of a Xanthan Polyelectrolyte Chain : Brownian Dynamics Simulation and Single Molecule Tracking", Phys. Rev. E., 2009, 79, 051919.   DOI
26 M. S. Chun and M. J. Ko, "Rheological Correlations of Relaxation Time for Finite Concentrated Semiflexible Polyelectrolytes in Solvents", J. Kor. Phys. Soc., 2012, 61, 1108-1113.   DOI
27 M. S. Chun and O. O. Park, "On the Intrinsic Viscosity of Anionic and Nonionic Rodlike Polysaccharide Solutions", Macromol. Chem. Phys., 1994, 195, 701-711.   DOI
28 A. J. Giacomin and J. M. Dealy in "Techniques in Rheological Measurement : Large-Amplitude Oscillatory Shear", A. A. Collyer Ed., Chapman & Hall, London, 1993, pp.99-121.
29 G. S. Chang, J. S. Koo, and K. W. Song, "Wall Slip of Vaseline in Steady Shear Rheometry", Korea-Aust. Rheol. J., 2003, 15, 55-61.
30 J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
31 T. Neidhofer, M. Wilhelm, and B. Debbaut, "Fourier-Transform Rheology Experiments and Finite-Element Simulations on Linear Polystyrene Solutions", J. Rheol., 2003, 47, 1351-1371.   DOI
32 K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Nonlinear Response of Complex Fluids under LAOS (Large Amplitude Oscillatory Shear) Flow", Korea-Aust. Rheol. J., 2003, 15, 97-105.
33 C. O. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, "Separation of the Nonlinear Oscillatory Response into a Superposition of Linear, Strain Hardening, Strain Softening, and Wall Slip Response", Macromolecules, 2007, 40, 4250-4259.   DOI
34 W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334.   DOI
35 T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc, Rheol., 1975, 19, 595-615.   DOI
36 M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-Transform Rheology", Rheol. Acta, 1998, 37, 399-405.   DOI
37 M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356.   DOI
38 H. Kim, K. Hyun, D. J. Kim, and K. S. Cho, "Comparison of Interpretation Methods for Large Amplitude Oscillatory Shear Response", Korea-Aust. Rheol. J., 2006, 18, 91-98.
39 M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H.W. Spiess, "The Crossover between Linear and Nonlinear Mechanical Behavior in Polymer Solutions as Detected by Fourier-Transform Rheology", Rheol. Acta, 2000, 39, 241-246.   DOI
40 M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mat. Eng., 2002, 287, 83-105.   DOI
41 J. Ahmed and H. S. Ramaswamy, "Effect of High-Hydrostatic Pressure and Concentration on Rheological Characteristics of Xanthan Gum", Food Hydrocolloids, 2004, 18, 367-373.   DOI
42 R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458.   DOI
43 W. Yu, P. Wang, and C. Zhou, "General Stress Decomposition in Nonlinear Oscillatory Shear Flow", J. Rheol., 2009, 53, 215-238.   DOI
44 F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan Gum : Production, Recovery, and Properties", Biotechnol. Adv., 2000, 18, 549-579.   DOI
45 E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, "A Rheological Study of the Order-Disorder Conformational Transition of Xanthan Gum", Biopolymers, 2001, 59, 339-346.   DOI
46 M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, "Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature", Food Res. Int., 2001, 34, 695-703.   DOI
47 R. Lapasin and S. Pricl, "Rheology of Industrial Polysaccharides: Theory and Applications", Aspen Publishers, Gaithersburg, MD, 1999.
48 B. Urlacher and O. Noble in "Thickening and Gelling Agents for Food-Xanthan", A. Imeson Ed., Chapman & Hall, London, 1997, pp.284-311.
49 J. N. BeMiller and K. C. Huber in "Food Chemistry-Carbohydrates", S. Damodaran, K. L. Parkin, and O. R. Fennema Eds., CRC Press, Boca Raton, 2008, pp.83-154.
50 H. Schott in "Remington's Pharmaceutical Sciences-Colloidal Dispersions", A. R. Gennaro and G. D. Chase Eds., Mack, Philadelphia, 1985, pp.286-289.
51 K. S. Kang and D. J. Pettit in "Industrial Gums", R. L. Whistler and J. N. Be Miller Eds., 3rd Ed., Academic Press, New York, 1993, pp.341-398.
52 P. J. Whitcomb and C. W. Macosko, "Rheology of Xanthan Gum", J. Rheol., 1978, 22, 493-505.   DOI
53 A. Palaniraj and V. Jayaraman, "Production, Recovery and Applications of Xanthan Gum by Xanthomonas Campestris", J. Food. Eng., 2011, 106, 1-12.   DOI
54 H. Y. Jang, K. Zhang, B. H. Chon, and H. J. Choi, "Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution", J. Ind. Eng. Chem., 2015, 21, 741-745.   DOI
55 J. Huang, B. Yan, A. Faghihnejad, H. Xu, and H. Zeng, "Understanding Nanorheology and Surface Forces of Confined Thin Films", Korea-Aust. Rheol. J., 2014, 26, 3-14.   DOI
56 W. E. Rochefort and S. Middleman, "Rheology of Xanthan Gum : Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments", J. Rheol., 1987, 31, 337-369.   DOI
57 K. C. Tam and C. Tiu, "Steady and Dynamic Shear Properties of Aqueous Polymer Solutions", J. Rheol., 1989, 33, 257-280.   DOI
58 M. Milas, M. Rinaudo, M. Knipper, and J. L. Schuppiser, "Flow and Viscoelastic Properties of Xanthan Gum Solutions", Macromolecules, 1990, 23, 2506-2511.   DOI
59 A. B. Rodd, J. J. Cooper-White, D. E. Dunstan, and D. V. Boger, "Gel Point Studies for Chemically-Modified Biopolymer Networks Using Small Amplitude Oscillatory Rheometry", Polymer, 2001, 42, 185-198.   DOI
60 N. B. Wyatt and M. W. Liberatore, "Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum", J. Appl. Polym. Sci., 2009, 114, 4076-4084.   DOI
61 E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia, "Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength", Carbohydr. Polym., 2010, 82, 1228-1235.   DOI
62 L. Ma and G. V. Barbosa-Canovas, "Viscoelastic Properties of Xanthan Gels Interacting with Cations", J. Food Sci., 1997, 62, 1124-1128.   DOI
63 L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong, "The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions", Carbohydr. Polym., 2013, 92, 516-522.   DOI
64 A. Giboreau, G. Cuvelier, and B. Launay, "Rheological Behavior of Three Biopolymer/Water Systems with Emphasis on Yield Stress and Viscoelastic Properties", J. Texture Stud., 1994, 25, 119-137.   DOI
65 R. Pal, "Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions", AIChE J., 1995, 41, 783-794.   DOI
66 R. K. Richardson and S. B. Ross-Murphy, "Nonlinear Viscoelasticity of Polysaccharide Solutions. 2 : Xanthan Polysaccharide Solutions", Int. J. Biol. Macromol., 1987, 9, 257-264.   DOI
67 T. Lim, J. T. Uhl, and R. K. Prudhomme, "Rheology of Self-Associating Concentrated Xanthan Solutions", J. Rheol., 1984, 28, 367-379.   DOI
68 M. M. Santore and R. K. Prudhomme, "Rheology of a Xanthan Broth at Low Stresses and Strains", Carbohydr. Polym., 1990, 12, 329-335.   DOI
69 K. W. Song, Y. S. Kim, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior", Fiber. Polym., 2006, 7, 129-138.   DOI