Browse > Article
http://dx.doi.org/10.12772/TSE.2016.53.213

Tensile, Dynamic Mechanical, and Abrasion Properties of Glass Fiber Reinforced Diepoxidized Polycardanol Composites Cured by Electron Beam  

Cheon, Jinsil (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Textile Science and Engineering / v.53, no.3, 2016 , pp. 213-219 More about this Journal
Abstract
In the present study, the effect of electron beam irradiation on the tensile, dynamic mechanical, and abrasion properties of glass-fiber-reinforced diepoxidized polycardanol (DEPC) composites was explored. Triarylsulfonium hexafluoroantimonate, an antimonate-type photoinitiator (2 wt%) was added to diepoxidized cardanol (DEC) prior to composite curing by electron beam. The glass fabrics pre-impregnated with DEPC were consolidated by direct irradiation of electron beam at 400, 500, and 600 kGy at ambient temperature and pressure. The composite properties strongly depend on the applied electron beam intensity. The result indicates that electron beam curing of glass fiber/DEPC composites at 600 kGy resulted in the highest tensile modulus, tensile strength, dynamic storage modulus, abrasion resistance, and lowest damping among the applied electron beam absorption doses.
Keywords
diepoxidized polycardanol; glass fiber; composites; electron beam curing; mechanical properties; abrasion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. H. Kim, K. Won, J. M. Kwon, H. S. Jeong, S. Y. Park, and E. S. An, "Synthesis of Polycardanol from A Renewable Resource Using a Fungal Peroxidase from Coprinus Cinereus", J. Mol. Cataly B: Enzym., 2005, 34, 33-38.   DOI
2 K. Won, Y. H. Kim, E. S. An, Y. S. Lee, and B. K. Song, "Horseradish Peroxidase-catalyzed Polymerization of Cardanol in the Presence of Redox Mediators", Biomacromolecules, 2004, 5, 1-4.   DOI
3 A. Govindan, "Cashew Nut Shell Liquid (CNSL): A Large Resource Base for Chemical Industry", Chem. Eng. World, 1997, 32, 79-80.
4 M. Lubi and E. T. Thachil, "Cashew Nut Shell Liquid (CNSL)-A Versatile Monomer for Polymer Synthesis", Des. Monom. Polym., 2000, 3, 123-153.   DOI
5 Q. Zhou, D. Cho, W. H. Park, B. K. Song, and H.-J. Kim, "FTIR Studies on the Curing Behavior of Polycardanol from Naturally Renewable Resources", J. Appl. Polym. Sci., 2011, 122, 2774-2778.   DOI
6 Q. Zhou, D. Cho, B. K. Song, and H.-J. Kim, "Novel Jute/Polycardanol Biocomposites: Effect of Fiber Surface Treatment on Their Properties", Compos. Interf., 2009, 16, 781-795.   DOI
7 D. A. Nishitsuji, G. Mariucci, M. C. Evora, and L. G. A. Silva, "Caticonic Concentration Effects on Electron Beam Cured of Carbon-Epoxy Composites", Radiat. Phys. Chem., 2010, 79, 306-309.   DOI
8 S. Alessi, C. Dispenza, P. G. Fuochi, U. Corda, M. Lavalle, and G. Spadaro, "E-beam Curing of Epoxy-based Blends in Order to Produce High-Performance Composites", Radiat. Phys. Chem., 2007, 76, 1308-1311.   DOI
9 G. Sui, Z. G. Zhang, C. Q. Chen, and W. H. Zhong, "Analyses on Curing Process of Electron Beam Radiation in Epoxy Resins", Mater. Chem. Phys., 2002, 78, 349-357.
10 M. Zenkiewicz, "Effect of Electron Beam Irradiation on Some Mechanical Properties of Polymer Films", Radiat. Phys. Chem., 2004, 69, 373-378.   DOI
11 Y. J. Jang, "Studies on the Effect of Electron Beam Irradiation on the Properties of Poly(lactic acid), the Blends, and the Biocomposites", Master Thesis, Kumoh National Institute of Technology, Gumi, Korea, 2012.
12 D. Cho, Y. J. Jang, and J.-H. Choi, "Thermal Properties of Poly(lactic acid) Films Containing A Multi-functional Monomer Cross-linked by Electron Beam Irradiation", J. Biobased Mater. Bioener., 2014, 8, 130-136.   DOI
13 B. K. Kim, D. Cho, O. H. Kwon, W. H. Park, and J.-H. Lee, "Effects of Electron Beam Irradiation on the Gel Fraction, Thermal and Mechanical Properties of Poly(butylene succinate) Crosslinked by Multi-functional Monomer", Mater. Design, 2015, 87, 428-435.   DOI
14 S. J. Park, M. K. Seo, J. R. Lee, and D. R. Lee, "Studies on Epoxy Resin Cured by Cationic Latent Thermal Catalysts: the Effect of the Catalysts on the Thermal, Rheological, and Mechanical Properties", J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 187-195.   DOI
15 J. V. Crivello, T. C. Walton, and R. Malik, 'Fabrication of Epoxy Matrix Composites by Electron Beam Induced Cationic Polymerization", Chem. Mater., 1997, 9, 1273-1284.   DOI
16 D. A. Nishitsuji, G. Marinucci, M. C. Evora, and L. G. A. Silva, "Study of Electron Beam Curing Process Using Epoxy Resin System", Nuclear Instru. Meth, Phys. Res. B, 2007, 265, 135-138.   DOI
17 J. V. Crivello, "Advanced Curing Technologies Using Photoand Electron Beam Induced Cationic Polymerization", Radiat. Phys. Chem., 2002, 64, 21-27.
18 J. Cheon, D. Cho, B. K. Song, J. Park, B. Kim, and B. C. Lee, "Thermogravimetric and Fourier-transform Infrared Analyses on the Cure Behavior of Polycardanol Containing Epoxy Groups Cured by Electron Beam", J. Appl. Polym. Sci., 2015, 132, 41599.
19 C. S. Lee, S. W. Park, and S. I. Kwon, "An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-blended Fuels", Energy & Fuels, 2005, 19, 2201-2208.   DOI
20 S. Y. Park, Y. H. Kim, and B. K. Song, "Polymer Synthesis by Enzyme Catalysis", Polym. Sci. Technol., 2005, 16, 342-353.
21 J. Cheon and D. Cho, "Effects of Electron Beam Absorption Dose on the Glass Transition, Thermal Expansion, Dynamic Mechanical Property and Water Uptake of Polycardanol Containing Epoxy Groups Cured by Electron Beam", J. Appl. Polym. Sci., 2015, 132, 42570
22 Q. Zhou, D. Cho, B. K. Song, and H. J. Kim, "Curing Behavior of Polycardanol by MEKP and Cobalt Naphthenate Using Differential Scanning Calorimetry", J. Therm. Anal. Calori., 2010, 99, 277-294.   DOI
23 C. Nah, J. H. Go, J. H. Byun, and B. S. Hwang, "Curing of Epoxy Resin with Natural Cashew Nut Shell Liquids", Korean Soc. Compos. Mater., 2008, 21, 16-21.
24 V. Pansare and A. Kulkarni, "Azo Dyes from Cashew Nut Shell Liquid Derivatives", J. Indian Chem. Soc., 1964, 41, 251-255.
25 S. H. Aziz and M. P. Ansell, "The Effect of Alkalization and Fibre Alignment on the Mechanical and Thermal Properties of Kenaf and Hemp Bast Fibre Composites: Part 2-Cashew Nut Shell Liquid Matrix", Compos. Sci. Technol., 2004, 64, 1231-1238.   DOI
26 A. B. Strong, "Fundamentals of Composites Manufacturing Materials, Methodsm, and Applications", Second Ed., Society of Manufacturing Engineers, Michigan, pp.27-31, 2008.
27 C. E. Corcione, G. Malucelli, M. Frigione, and A. Maffezzoli, "UV-curable Epoxy Systems Containing Hyperbranced Polymers: Kinetics Investigation by Photo-DSC and Real-time FT-IR Experiments", Polym. Testing, 2009, 28, 157-164.   DOI
28 D. Cho, J. M. Seo, H. S. Lee, C. W. Cho, S. O. Han, and W. H. Park, "Property Improvement of Natural Fiber-reinforced Green Composites by Water Treatment", Adv. Compos. Mater., 2007, 16, 299-314.   DOI
29 A. K. Mohanty, M. Misra, and G. Hinrichsen, "Biodegradable Polymers and Biocomposites: An Overview", Macromol. Mater. Eng., 2000, 276, 1-24.
30 D. A. Nishisuji, G. Marinucci, M. C. Evora, and L. G. A. Silva, "Study of Electron Beam Curing Process Using Epoxy Resin System", Nuclear Instru. Meth. Phys. Res. B, 2007, 265, 135-138.   DOI
31 L. Fengmei, B. Jianwen, C. Xiangbao, B. Huaying, and W. Huiliang, "Factors Influencing EB Curing of Epoxy Matrix", Radiat. Phys. Chem., 2002, 63, 557-561.   DOI
32 T. Endo, F. Sanda, and T. Toneri, "Cationic Polymerization of Epoxide by Fluorenylphosphonium Salts as Thermally Latent Initiators. Substituent Effect on the Initiator Activity", Macromolecules, 2001, 34, 1518-1521.   DOI