Browse > Article
http://dx.doi.org/10.12772/TSE.2015.52.353

Influence of Electron Beam Irradiation on the Thermal, Mechanical, and Electrical Properties of Polyethylene/Multiwalled Carbon Nanotube Nanocomposite Films  

Yoo, Tae Jong (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Kim, Byungnam (Radiation Equipment Research Division, Korea Atomic Energy Research Institute)
Jeong, Young Gyu (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Textile Science and Engineering / v.52, no.6, 2015 , pp. 353-360 More about this Journal
Abstract
We report the effects of electron beam (EB) irradiation on the thermal, mechanical, and electrical properties of nanocomposite films, based on polyethylene (PE) and multiwalled carbon nanotubes (MWCNTs), manufactured by solid mixing and melt-compression. For this purpose, the MWCNT content in the nanocomposite films was controlled to 1-10 wt% and the EB irradiation dose was 1-150 kGy. It was found that the melting temperature and enthalpy of pristine PE and its nanocomposite film were improved on using low EB doses of 1 and 10 kGy because of irradiation-induced heating and crosslinking. In contrast, high EB doses of 50 and 150 kGy led to significant reduction in the melting temperature and enthalpy as well crystallization temperature and enthalpy of the films because of chain scission or degradation. The electrical resistivity of the nanocomposite films decreased from ${\sim}10^{10}$ to ${\sim}10^1{\Omega}\;cm$ on increasing the MWCNT content, and regardless of the EB irradiation dose, electrical percolation of MWCNTs in the PE matrix was attained at a MWCNT content between 3 and 5 wt%. Accordingly, PE/MWCNT nanocomposite films with low electrical resistivity of $10^2-10^1{\Omega}\;cm$, which were subjected to moderate EB irradiation doses, exhibit excellent electric heating behavior, which depends on the applied voltage and MWCNT content.
Keywords
electron beam irradiation; polyethylene; carbon nanotube; nanocomposite films; thermal property; electrical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Yang, C. Wang, K. Wang, Q. Zhang, F. Chen, R. Du, and Q. Fu, "Direct Formation of Nanohybrid Shish-kebab in the Injection Molded Bar of Polyethylene/multiwalled Carbon Nanotubes Composite", Macrmolecules, 2009, 42, 7016-7023.   DOI
2 S. Isaji, Y. Bin, and M. Matsuo, "Electrical Conductivity and Self-temperature-control Heating Properties of Carbon Nanotubes Filled Polyethylene Films", Polymer, 2009, 50, 1046-1053.   DOI
3 I. V. Zaporotskova, A. A. Krutoyarov, and N. P. Polikarpov, "Adsorption of Polyethylene, Polypropylene, Polyvinyl Chloride Monomer Units on the Single-walled Carbon Nanotube Surface", Comput. Model New Technol., 2015, 19, 19-22.
4 M. R. Cleland, L. A. Parks, and S. Cheng, "Applications for Radiation Processing of Materials", Nucl. Instr. Meth. Phys. Res. B, 2003, 208, 66-73.   DOI
5 M. Frounchi, S. Dadbin, and F. Panahinia, "Comparison between Electron-beam and Chemical Crosslinking of Silicone Rubber", Nucl. Instr. Meth. Phys. Res. B, 2006, 243, 354-358.   DOI
6 G. Szebenyi, G. Romhany, B. Vajna, and T. Czvikovszky, "EB Treatment of Carbon Nanotube-reinforced Polymer Composites", Radiat. Phys. Chem., 2012, 81, 1383-1388.   DOI
7 R. L. Clough, "High-energy Radiation and Polymers: A Review of Commercial Processes and Emerging Applications", Nucl. Instr. Meth. Phys. Res. B, 2001, 185, 8-33.   DOI
8 A. G. Chmielewski, M. Haji-Saeid, and S. Ahmed, "Progress in Radiation Processing of Polymers", Nucl. Instr. Meth. Phys. Res. B, 2005, 236, 44-54.   DOI
9 A. J. Satti, N. A. Andreucetti, J. A. Ressia, M. F. Vallat, C. Sarmoria, and E. M. Valles, "Modelling Molecular Weight Changes Induced in Polydimethylsiloxane by Gamma and Electron Beam Irradiation", Eur. Polym. J., 2008, 44, 1548-1555.   DOI
10 S. Cheng, E. Phillips, and L. Parks, Process Ability Improvement of Polyolefin Sthrough Radiation-induced Branching", Radiat. Phys. Chem., 2010, 79, 329-334.   DOI
11 J. Yan, B. Kim, and Y. G. Jeong, "Thermomechanical and Electrical Properties of PDMS/MWCNT Composite Films Crosslinked by Electron Beam Irradiation", J. Mater. Sci., 2015, 50, 5599-5608.   DOI
12 G. Lewis, "Properties of Crosslinked Ultra-high-molecularweight Polyethylene", Biomaterials, 2001, 22, 371-401.   DOI
13 J. A. Puertolas, F. J. Medel, J. Cegonino, E. Gomez-Barrrena, and R. Rios, "Influence of the Remelting Process on the Fatigue behavior of Electron Beam Irradiated UHMWPE", J. Biomed. Mater. Res. B Appl. Biomater., 2006, 76, 346-353.
14 H. L. Wang, L. Xu, J. T. Hu, M. H. Wang, and G. Z. Wu, "Radiation-induced Oxidation of Ultra-high Molecular Weight Polyethylene (UHMWPE) Powder by Gamma Rays and Electron Beams: A Clear Dependence of Dose Rate", Radiat. Phys. Chem., 2015, 115, 88-96.   DOI
15 R. Haggenmueller, F. M. Du, J. E. Fischer, and K. I. Winey, "Interfacial in situ Polymerization of Single Wall Carbon Nanotube/nylon 6,6 Nanocomposites", Polymer, 2006, 47, 2381-2388.   DOI
16 S. R. Bakshi, J. E. Tercero, and A. Agarwal, "Synthesis and Characterization of Multiwalled Carbon Nanotube Reinforced Ultra High Molecular Weight Polyethylene Composite by Electrostatic Spraying Technique", Compos. Part A, 2007, 38, 2493-2499.   DOI