Browse > Article
http://dx.doi.org/10.12772/TSE.2015.52.199

A Study on the Design of Dye-sensitized Solar Cells Using Textile Photoelectrodes and Their Electrical Properties  

Lee, Hye Mi (Department of Organic Material Science and Engineering, Pusan National University)
Yun, Min Ju (Department of Organic Material Science and Engineering, Pusan National University)
Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.52, no.3, 2015 , pp. 199-205 More about this Journal
Abstract
In this study, we designed and investigated textile-type flexible dye-sensitized solar cells (DSSCs) using titanium mesh as the photoelectrode. To improve the surface area of the $TiO_2$ photoelectrode and the performance of the DSSCs, titanium-oxide nanotubes (TNTs) were uniformly grown on the surface of the titanium mesh using anodization. The TNTs were tens of micrometers in length, which contributed to the absorption of sufficient light and effective transfer of electrons. We studied the effect of TNT growth on the DSSCs, and found that the power conversion efficiency of the DSSCs increased from 1.9% to 3.2% upon increasing the length of the TNTs on the surface of the titanium mesh.
Keywords
dye-sensitized solar cells; flexible; textile type; titanium mesh; titanium oxide nanotube(TNT); anodizing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. B. Xie, S. Adams, D. J. Blackwood, and J. Wang, "The Effects of Anodization Parameters on Titania Nanotube Arrays and Dye Sensitized Solar Cells", Nanotechnol., 2008, 19, 405701.   DOI
2 G. K. Mor, O. K. Varghese, M. Paulose, and C. A. Grimes, "Transparent Highly Ordered $TiO_2$ Nanotube Arrays via Anodization of Titanium Thin Films", Adv. Funct. Mater., 2005, 15, 1291-1296.   DOI
3 지식경제부, "태양광발전 용어집", 2007.
4 G. Boschloo and A. Hagfeldt, "Activation Energy of Electron Transport in Dye-sensitized $TiO_2$ Solar Cells", J. Phys. Chem., 2005, 109, 12093-12098.   DOI
5 J. E. Houser and K. R. Hebert, "Modeling the Potential Distribution in Porous Anodic Alumina Films during Steady-State Growth", J. Electrochem. Soc., 2006, 153, B566-B573.   DOI
6 J. E. Houser and K. R. Hebert, "The Role of Viscous Flow of Oxide in the Growth of Self-ordered Porous Anodic Alumina Films", Nat. Mater., 2009, 8, 415-420.   DOI
7 Y. Jo, J. Lim, H. Nam, and Y. Jun, "Electrochemical Approaches to Dye-Sensitized Solar Cells", J. Korean Electrochem. Soc., 2009, 12, 301-310.   DOI   ScienceOn
8 B. O'Regan and M. Gratzel, "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films", Nature, 1991, 353, 737.   DOI
9 A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazzeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Gratzel, "Porphyrin-sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency", Science, 2011, 334, 629-634.   DOI   ScienceOn
10 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, "Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) Ruthenium(II) Charge-transfer Sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes", J. Am. Chem. Soc., 1993, 115, 6382-6390.   DOI
11 M. Durr, A. Bamedi, A. Yasuda, and G. Nelles, "Tandem Dyesensitized Solar Cell for Improved Power Conversion Efficiencies", Phys. Lett., 2004, 84, 3397-3399.
12 Y. Chiba, A. Isiam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, "Dye-sensitized Solar Cells with Conversion Efficiency of 11.1%", Jpn. J. Appl. Phys., 2006, 45, L638-L640.   DOI
13 M. J. Yun, S. I. Cha, S. H. Seo, and D. Y. Lee, "Highly Flexible Dye-Sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth", Sci. Rep., 2014, 4, 1-6.
14 M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers", J. Am. Chem. Soc., 2005, 127, 16835-16847.   DOI
15 이재형, 임동건, 이준신, "Principle of Solar Cell", 홍릉과학출판사, 2005.
16 이준신, 김경해, "Solar Cell Engineering", 도서출판그린, 2005.
17 L. Zhang, E. Shi, C. Ji, Z. Li, P. Li, Y. Shang, Y. Li, J. Wei, K. Wang, and H. Zhu, "Fiber and Fabric Solar Cells by Directly Weaving Carbon Nanotube Yarns with CdSe Nanowire-Based Electrodes", Nanoscale, 2012, 4, 4954-4959.   DOI
18 Z. Liu, V. (Ravi) Subramania, and M. Misra, "Vertically Oriented $TiO_2$ Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells", J. Phys. Chem., 2009, C 113, 14028-14033.
19 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturi, "Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy", Surf. Interface Anal., 1999, 27, 629-637.   DOI
20 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Use of Highly-ordered $TiO_2$ Nanotube Arrays in Dye-sensitized Solar Cells", Nano Lett., 2006, 6, 215-218.   DOI
21 K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, "Highly-ordered $TiO_2$ Nanotube Arrays up to $220{{\mu}m}$ in Length: Use in Water Photoelectrolysis and Dye-sensitized Solar Cells", Nanotechnol., 2007, 18, 065707.   DOI