Browse > Article
http://dx.doi.org/10.12772/TSE.2015.52.159

A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids  

Chang, Gap-Shik (Reliability Assessment Team, FITI Testing & Research Institute)
Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University)
Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Textile Science and Engineering / v.52, no.3, 2015 , pp. 159-166 More about this Journal
Abstract
Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly(ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated in large amplitude oscillatory shear (LAOS) flow fields over a wide range of strain amplitudes. In order to predict the nonlinear viscoelastic behavior of polymer liquids in strain-sweep experiments, a new analysis method including a simple empirical model was proposed and then its validity was thoroughly evaluated in this study. The results have shown that the suggested model is significant in 95% confidence level and predicts exactly the nonlinear viscoelastic behavior of polymer liquids over a whole range of strain amplitudes tested. The strain limits of linear viscoelastic response and nonlinear behavior indices were determined using this model to estimate the LAOS flow behavior in strain-sweep experiments. The master curves of strain limits and nonlinear behavior indices can be obtained by representing these data against the product of angular frequency by characteristic time. The LAOS flow behavior of polymer systems with various molecular weights and different concentrations can well be predicted from these master curves.
Keywords
viscoelastic polymer liquids; large amplitude oscillatory shear (LAOS) flow behavior; strain-sweep experiment; empirical model; nonlinear viscoelastic behavior; strain limit of linear viscoelastic response; nonlinear behavior index;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758.   DOI
2 S. Hofl, F. Kremer, H. W. Spiess, M. Wilhelm, and S. Kahle, "Effect of Large Amplitude Oscillatory Shear (LAOS) on the Dielectric Response of 1,4-cis-Polyisoprene", Polymer, 2006, 47, 7282-7288.   DOI
3 J. A. Yosick, A. J. Giacomin, and P. Moldenaers, "A Kinetic Network Model for Nonlinear Flow Behavior of Molten Plastics in both Shear and Extension", J. Non-Newt. Fluid Mech., 1997, 70, 103-123.   DOI
4 W. Philippoff, "Further Dynamic Investigation on Polymers", J. Appl. Phys., 1954, 25, 1102-1107.   DOI
5 K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I): Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093.
6 K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
7 K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249.   DOI
8 K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63.   DOI
9 R. S. Jeyaseelan, A. J. Giacomin, and J. G. Oakley, "Simplification of Network Theory for Polymer Melts in Nonlinear Oscillatory Shear", AIChE J., 1993, 39, 846-854.   DOI
10 R. S. Jeyaseelan and A. J. Giacomin, "Structural Network Theory for a Filled Polymer Melt in Large Amplitude Oscillatory Shear", Polymer Gels and Networks, 1995, 3, 117-133.   DOI
11 F. Yziquel, P. J. Carreau, and P. A. Tanguy, "Non-linear Viscoelastic Behavior of Fumed Silica Suspensions", Rheol. Acta, 1999, 38, 14-25.   DOI
12 L. Ma, J. Xu, P. A. Coulombe, and D. Wirtz, "Keratin Filament Suspensions Show Unique Micromechanical Properties", J. Biol. Chem., 1999, 274, 19145-19151.   DOI
13 T. Narumi, H. See, A. Suzuki, and T. Hasegawa, "Response of Concentrated Suspensions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2005, 49, 71-85.   DOI
14 C. Daniel, I. W. Hamley, M. Wilhelm, and W. Mingvanish, "Non-linear Rheology of a Face-Centered Cubic Phase in a Diblock Copolymer Gel", Rheol. Acta, 2001, 40, 39-48.   DOI
15 W. Yu, M. Bousmina, and C. Zhou, "Note on Morphology Determination in Emulsions via Rheology", J. Non-Newt. Fluid Mech., 2006, 133, 57-62.   DOI
16 H. J. Ahn and K. W. Song, "Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields", Ann. Trans. Nordic Rheol. Soc., 2011, 19, 13-17.
17 N. Phan-Thien, M. Newberry, and R. I. Tanner, "Non-linear Oscillatory Flow of a Soft Solid-like Viscoelastic Materials", J. Non-Newt. Fluid Mech., 2000, 92, 67-80.   DOI
18 C. Michon, C. Chapuis, V. Langendorff, P. Boulenguer, and G. Cuvelier, "Strain-Hardening Properties of Physical Weak Gels of Biopolymers", Food Hydrocolloids, 2004, 18, 999-1005.   DOI
19 C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, "Nonlinear Elasticity in Biological Gels", Nature, 2005, 435, 191-194.   DOI
20 T. S. K. Ng, G. H. McKinley, and R. H. Ewoldt, "Large Amplitude Oscillatory Shear Flow of Gluten Dough: A Model Power-Law Gel", J. Rheol., 2011, 55, 627-654.   DOI   ScienceOn
21 K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions: Oscillatory Shear Flow Behavior", Kor.-Aust. Rheol. J., 2006, 18, 67-81.
22 E. K. Park and K. W. Song, "Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations with Respect to Rubbing onto the Human Body", Kor.-Aust. Rheol. J., 2010, 22, 279-289.
23 M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356.   DOI
24 W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334.   DOI
25 M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mat. Eng., 2002, 287, 83-105.   DOI
26 G. S. Chang, Ph. D. Thesis, Pusan National University, Busan, Korea, 2010.
27 I. F. MacDonald, B. D. Marsh, and E. Ashare, "Rheological Behavior for Large Amplitude Oscillatory Motion", Chem. Eng. Sci., 1969, 24, 1615-1625.   DOI
28 H. C. Yen and L. V. McIntire, "Finite Amplitude Dynamic Motion of Viscoelastic Materials", Trans. Soc. Rheol., 1972, 16, 711-726.   DOI
29 J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing: Theory and Applications", Van Nostrand Reinhold, New York, 1990.
30 R. I. Tanner, "Engineering Rheology", 2nd Ed., Oxford University Press, New York, 2000.
31 K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly (Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203.
32 K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307.
33 F. E. Bailey, Jr. and J. V. Koleske, "Poly(Ethylene Oxide)", Academic Press, New York, 1976.
34 K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (Polyethylene Oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101.
35 R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids", 2nd Ed., Vol. 2, John Wiley & Sons, New York, 1987.
36 S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(Ethylene Oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585.
37 S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly (Ethylene Oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891.   DOI
38 P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988, 27, 191-204.   DOI
39 L. H. Gross and B. Maxwell, "The Limit of Linear Viscoelastic Response in Polymer Melts as Measured in the Maxwell Orthogonal Rheometer", Trans. Soc. Rheol., 1972, 16, 577-601.   DOI
40 R. I. Tanner, "Network Rupture and the Flow of Concentrated Polymer Solutions", AIChE J., 1969, 15, 177-183.   DOI
41 R. B. Bird and P. J. Carreau, "A Nonlinear Viscoelastic Model for Polymer Solutions and Melts", Chem. Eng. Sci., 1968, 23, 427-434.   DOI
42 I. F. Macdonald, "Large Amplitude Oscillatory Shear Flow of Viscoelastic Materials", Rheol. Acta, 1975, 14, 801-811.   DOI
43 G. Astarita and R. J. J. Jongschaap, "The Maximum Amplitude of Strain for the Validity of Linear Viscoelasticity", J. Non-Newt. Fluid Mech., 1977/1978, 3, 281-287.   DOI
44 B. D. Coleman and W. Noll, "Foundations of Linear Viscoelasticity", Rev. Modern Phys., 1961, 33, 239-248.   DOI
45 J. L. Leblanc, "Non-linear Viscoelastic Characterization of Natural Rubber Gum through Large Amplitude Harmonic Experiments", J. Rubber Res., 2007, 10, 63-88.
46 R. J. J. Jongschaap, K. H. Knapper, and J. S. Lopulissa, "On the Limit of Linear Viscoelastic Response in the Flow between Eccentric Rotating Disks", Polym. Eng. Sci., 1978, 18, 788-792.   DOI
47 T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc. Rheol., 1975, 19, 595-615.   DOI
48 J. L. Leblanc, "Investigating the Nonlinear Viscoelastic Behavior of Rubber Materials through Fourier Transform Rheometry", J. Appl. Polym. Sci., 2005, 95, 90-106.   DOI