Browse > Article
http://dx.doi.org/10.12772/TSE.2013.50.232

Fabrication of Networked Carbon Nanofiber Mats, and Analysis of Their Thermal Properties  

Kim, Jina (Department of Materials Science and Engineering, Seoul National University)
Na, Won-Jin (Department of Materials Science and Engineering, Seoul National University)
Yu, Woong-Ryeol (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Textile Science and Engineering / v.50, no.4, 2013 , pp. 232-240 More about this Journal
Abstract
The main purpose of this research was to fabricate carbon nanofiber (CNF) mats with a high thermal conductivity, by electrospinning of poly(acrylonitrile) (PAN) and subsequent thermal treatment. To improve the thermal conductivity of the CNF mats, isotropic and mesophase pitches were co-axially electrospun with a PAN shell. The mesophase pitch in this research was prepared by thermal treatment from isotropic pitch, and the structural properties were evaluated by Raman spectroscopy and X-ray diffraction analysis. The contact resistance between CNFs in mats was effectively reduced by wetting of the PAN shell using ethanol and the formation of a networked structure during thermal processing. The thermal conductivity of the resulting CNF mats was measured by a laser flash method, and a significantly improved thermal conductivity was obtained for isotropic pitch-PAN CNF mats. This is attributed to a networked structure, a well-developed carbon structure, and a reduced contact resistance.
Keywords
coaxial electrospinning; isotropic pitch; mesophase pitch; thermal conductivity; carbon nanofiber; newtworked carbon nanofiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Murthy, Y. Joshi, and W. Nakayama, "Two-Phase Heat Spreaders Utilizing Microfabricated Boiling Enhancement Structures", Heat Transfer Engineering, 2004, 25, 26-36.   DOI   ScienceOn
2 H. Yan, "Electrospinning-derived Carbon/graphite Nanofiber Mats from a Polyimide-mesophase Pitch Blend Precursor for Flexible Thermal Management Thin Films", Doctoral Thesis, Univ. of Akron, Akron, OH, USA, 2011.
3 D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, "Thermal and Electrical Transport in Multi-walled Carbon Nanotubes", Phys Lett A, 2004, 329, 207-213.   DOI   ScienceOn
4 D. H. Reneker and I. Chun, "Nanometer Diameter Fibers of Polymer, Produced by Electrospinning", Nanotechnology, 1996, 7, 216-223.   DOI   ScienceOn
5 A. G. Nasibulin, A. Ollikainen, A. S. Anisimov, D. P. Brown, P. V. Pikhitsa, S. Holopainen, J. S. Penttila, P. Helisto, J. Ruokolainene, M. Choi, and E. I. Kauppinen, "Integration of Single-walled Carbon Nanotubes into Polymer Films by Thermo-compression", Chem Eng J, 2008, 136, 409-413.   DOI   ScienceOn
6 A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, "Multifunctional Free- Standing Single-Walled Carbon Nanotube Films", ACS Nano, 2011, 5, 3214-3221.   DOI   ScienceOn
7 A. V. Goponenko, H. Hou, and Y. A. Dzenis, "Avoiding Fusion of Electrospun 3,3,4,4-biphenyltetracarboxylic dianhydride-4,4-oxydianiline Copolymer Nanofibers during Conversion to Polyimide", Polymer, 2011, 52, 3776-3782.   DOI   ScienceOn
8 L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Bowlin, D. G. Simpson, and G. E. Wnek, "Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers", Chem Mater, 2003, 15, 1860-1864.   DOI   ScienceOn
9 P. Taepaiboon, U. Rungsardthong, and P. Supaphol, "Effect of Cross-linking on Properties and Release Characteristics of Sodium Salicylate-loaded Electrospun Poly(vinyl alcohol) Fibre Mats", Nanotechnology, 2007, 18, 175102/1-175102/11.
10 K. Yamamoto, "Molecular-dynamics Simulations of Thermal Transport in Carbon Nanotubes with Structural Defects", e-J Surf Sci Nanotechnol, 2006, 4, 239-243.   DOI
11 B. Nysten, L. Piraux, and J.-P. Issi, "Thermal Conductivity of Pitch-derived Fibres", J Phys D: Appl Phys, 1985, 18, 1307-1310.   DOI   ScienceOn
12 T. D. Ositinskaya, A. P. Podoba, and S. V. Shmegera, "Influence of Point Defects on the Thermal Conductivity of Diamond Single Crystals: State of the Art", Diamond and Related Materials, 1993, 2, 1500-1504.   DOI   ScienceOn
13 P. Morgan, "Precursors for Carbon Fiber Manufacture. In Carbon Fibers and Their Composites", Taylor & Francis Group, LLC: Boca Raton, FL, 1985, pp.121-184.
14 K. Naito, J.-M. Yang, Y. Xu, and Y. Kagawa, "Enhancing the Thermal Conductivity of Polyacrylonitrile- and Pitch-based Carbon Fibers by Grafting Carbon Nanotubes on Them", Carbon, 2010, 48, 1849-1857.   DOI   ScienceOn
15 T. Matsumoto, "Mesophase Pitch and Its Carbon Fibers", Pure and Applied Chemistry, 1985, 57, 1553-1562.   DOI
16 J. G. Lavin, D. R. Boyington, J. Lahijani, B. Nystem, and J. P. Issi, "The Correlation of Thermal Conductivity with Electrical Resistivity in Mesophase Pitch-based Carbon Fiber", Carbon, 1993, 31, 1001-1002.   DOI   ScienceOn
17 N. C. Gallego, D. D. Edie, B. Nysten, J. P. Issi, J. W. Treleaven, and G. V. Deshpande, "The Thermal Conductivity of Ribbon-shaped Carbon Fibers", Carbon, 2000, 38, 1003-1010.   DOI   ScienceOn
18 N.-N. Bui, B.-H. Kim, K. S. Yang, M. E. Dela Cruz, and J. P. Ferraris, "Activated Carbon Fibers from Electrospinning of Polyacrylonitrile/pitch Blends" Carbon, 2009, 47, 2538-2539.   DOI   ScienceOn
19 P. Scherrer, "Bestimmung der Grobe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen", Mathematisch-Physikalische Klasse, 1918, 2, 98-100.
20 I. Chun, D. H. Reneker, H. Fong, X. Fang, J. Deitzel, N. B. Tan, and K. Kearns, "Carbon Nanofibers from Polyacrylonitrile and Mesophase Pitch", J Adv Mater, 1999, 31, 36-41.
21 Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D. H. Reneker, and H. Fong, "Development of Carbon Nanofibers from Aligned Electrospun Polyacrylonitrile Nanofiber Bundles and Characterization of Their Microstructural, Electrical, and Mechanical Properties", Polymer, 2009, 50, 2999-3006.   DOI   ScienceOn
22 A. A. Balandin, "Better Computing Through CPU Cooling", IEEE Spectrum, 2009, October, 29-33.
23 J. Norley, J. J. W. Tzeng, G. Getz, J. Klug, and B. Fedor, "The Development of a Natural Graphite Heat-spreader", Seventeenth Annual IEEE Symposium : Semiconductor Thermal Measurement and Management, pp.107-110, Piscataway, NJ, 2001.