Browse > Article
http://dx.doi.org/10.12772/TSE.2013.50.108

Electrical Properties and Heating Performance of Polyurethane Hybrid Nanocomposite Films Containing Graphite and MWNTs  

Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Lee, Jong Hwan (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Lee, In Sung (Korea Textile Machinery Research Institute)
Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Textile Science and Engineering / v.50, no.2, 2013 , pp. 108-114 More about this Journal
Abstract
Polyurethane(PU) hybrid nanocomposite films containing graphite and multiwalled carbon nanotubes (MWNTs) were prepared by a solution-casting method, and their electrical properties and heating performance were investigated as a function of conducting hybrid filler content. The electrical resistivity of the PU/hybrid nanocomposite films decreased slightly from $2.40{\times}10^2{\Omega}cm$ to $2.79{\times}10^1{\Omega}cm$ with increasing the hybrid filler content (5.0~9.0 wt%). The current-voltage (I-V) characteristics of these nanocomposite films indicate a significant increase in current level with 9.0 wt% hybrid filler content, which reflects the fact that above the percolation threshold, the conduction mechanism in the nanocomposite films changes from tunneling conduction (nonlinear) to ohmic conduction due to the direct contact between the graphite and the MWNTs (linear). As a result, the PU/hybrid nanocomposite films containing 9.0 wt% hybrid filler with 4.5 wt% graphite and 4.5 wt% MWNTs can be quickly heated from room temperature to $48.8^{\circ}C$ within 80 s by applying a DC voltage of 30 V, whereas the PU nanocomposite films containing 30.0 wt% graphite or 5.0 wt% MWNTs could only be heated to $39.2^{\circ}C$ and $30.6^{\circ}C$, respectively.
Keywords
graphite; MWNT; hybrid; nanocomposite films; electrical properties; heating performance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic Interference Shielding of Graphene/Epoxy Composites”, Carbon, 2009, 47(4), 922-925.   DOI   ScienceOn
2 M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, “Comparative Study of Electomagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-walled Carbon Nanotube/Polystyrene Composites”, Carbon, 2012, 50(14), 5126-5134.   DOI   ScienceOn
3 S. Konwer, J. Maiti, and S. Dolui, “Preparation and Optical/ Electrical/Electochemical Properties of Expanded Graphitefilled Polypyrrole Nanocomposite”, Mater Chem Phys, 2011, 128, 283-290.   DOI   ScienceOn
4 L. Flandin, Y. Brechet, and J. Cavaile, "Electrically Conductive Polymer Nanocomposites as Deformation Sensors", Compos Sci Technol, 2001, 61, 895-901.   DOI   ScienceOn
5 S. Qu and S. C. Wong, “Piezoresistive Behavior of Polymer Reinforced by Expanded Graphite”, Compos Sci Technol, 2007, 67, 231-237.   DOI   ScienceOn
6 B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, “Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring Made by Carbon Nanotube with Polyelectrolytes”, Nano Lett, 2008, 8, 4151-4157.   DOI   ScienceOn
7 D. S. Hecht, L. Hu, and G. Grüner, “Electronic Properties of Carbon Nanotube/Fabric Composites”, Curr Appl Phys, 2000, 7, 60-63.
8 H. C. Neizert, L. Vertuccio, and A. Sorrentino, “Epoxy/MWCNT Composite as Temperature Sensor and Electrical Heating Element”, IEEE T Nanotechnol, 2011, 10(4), 688-693.   DOI   ScienceOn
9 M. Moniruzzaman and K. I. Winey, “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromolecules, 2006, 39, 5194-5205.   DOI   ScienceOn
10 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 442, 282-286.
11 W. Bauhofer and J. Z. Kovacs, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites”, Compos Sci Technol, 2009, 69, 1486-1498.   DOI   ScienceOn
12 Y. P. Mamunya, Y. V. Muzychenko, P. Pissis, E. V. Lebedev, and M. I. Shut, “Percolation Phenomena in Polymers Containing Dispersed Iron”, Polym Eng Sci, 2002, 42(1), 90-100.   DOI   ScienceOn
13 P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, and A. M. Rao, “Polyaniline/Carbon Nanotube Composite Schottky Contacts”, Polym Eng Sci, 2004, 44(1), 28-33.   DOI   ScienceOn
14 I. M. Afanasov, V. A. Morozov, A. V. Kepman, S. G. Ionov, A. N. Seleznev, G. V. Temdeloo, and V. V. Avdeev, “Preparation, Electrical and Thermal Properties of New Exfoliated Graphite-based Composites”, Carbon, 2009, 47(1), 263-270.   DOI   ScienceOn
15 J. N. Colman, U. Khan, W. J. Blau, and Y. K. Gun'ko, "Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites", Carbon, 2006, 44, 1624-1652.   DOI   ScienceOn
16 K. M. Chu, D. G. Kim, Y. C. Sohn, S. E. Lee, C. Y. Moon, and S. H. Park, “Electrical and Thermal Properties of Carbon-Nanotube Composite for Flexible Electric Heating-Unit Applications”, IEEE Electr Device L, 2013, 34(5), 668-670.   DOI   ScienceOn
17 L. Liu, S. Peng, X. Niu, and W. Wen, "Microheaters Fabricated from a Conducting Composite", Appl Phys Lett, 2006, 89, 223521-1-223521-3.   DOI   ScienceOn
18 H. Lu, K. Yu, S. Sun, Y. Liu, and J. Leng, “Mechanical and Shape-Memory Behavior of Shape-Memory Polymer Composites with Hybrid Fillers”, Polym Int, 2010, 59, 766-771.
19 E. Lee, J. H. Lee, Y. H. Kim, and E. O. Kim, "Conductive Polypyrrole/Polyester Composite Fabrics for Heating Element", Text Sci Eng, 2010, 47(5), 345-351.   과학기술학회마을
20 S. Y. Lee, J. H. Cho, and Y. H. Kim, "Electrical Heating Effect and Water Repelling Property of Fabrics Spray-Coated with Mixed Solution of Carbon Nanotubes and Hyperbranched Polyurethane", Text Sci Eng, 2010, 47(3), 184-190.   과학기술학회마을
21 C. S. Kang, M. H. Jee, and D. H. Baik, "Mechanical and Electrical Properties of Polyurethane Hybrid Nanocomposites Containing MWNT and Graphite as Conducting Nanoparticles", Text Sci Eng, 2012, 49(3), 174-180.   과학기술학회마을   DOI   ScienceOn
22 N. K. Srivastave and R. M. Mehra, "Study of Structural, Electical, and Dielectric Properties of Polystyrene/Foliated Graphite Nanocomposite Developed Via In Situ Polymerization", J Appl Polym Sci, 2008, 109, 3991-3999.   DOI   ScienceOn
23 A. Choudhury, “Synthesis and Characterization of Poly(otoluidine)/ Functionalized Multi-walled Carbon Nanotubes Nanocomposites with Improved Electrical Conductivity”, Mater Chem Phys, 2011, 130, 231-236.   DOI   ScienceOn