Browse > Article

Electrical Heating Effect and Water Repelling Property of Fabrics Spray-Coated with Mixed Solution of Carbon Nanotubes and Hyperbranched Polyurethane  

Lee, Sun-Young (Department of Textile Engineering, Konkuk University)
Cho, Jae-Whan (Department of Textile Engineering, Konkuk University)
Kim, Young-Ho (Department of Advanced Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Textile Science and Engineering / v.47, no.3, 2010 , pp. 184-190 More about this Journal
Abstract
Cotton and polyester fabrics were coated with a hyperbranched polyurethane (HBPU) solution including multi-walled carbon nanotubes (MWNTs) using a spraying method. The MWNT-coated fabrics showed good water repelling properties at $70^{\circ}C$ and room temperature due to presence of well dispersed MWNTs on the fabric surface. The electrical heating effect of the MWNT-coated fabrics was demonstrated when a DC voltage of 10-30 V was applied to the fabrics, which was dependent on the electrical conductivity of the MWNT/HBPU composites. The MWNT coating on the fabric surface by spraying may be a good method for achieving electrical heating and water repellence.
Keywords
carbon nanotubes; composites; electrical conductivity; water repelling property; fabric coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, ''High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water", Nano Lett, 2003, 3,269-273.   DOI   ScienceOn
2 Y. Liu, X. Chena, and J. H. Xin, "Can Superhydrophobic Surfaces Repel Hot Water?", J Mater Chem, 2009, 19, 5602- 5611.   DOI   ScienceOn
3 Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qi, and J. H. Xin, "Artificial Lotus Leaf Structures from Assembling Carbon Nanotubes and Their Applications in Hydrophobic Textiles", J Mater Chem, 2007, 17, 1071-1078.   DOI   ScienceOn
4 N. G. Sahoo, Y. C. Jung, H. J. Yoo, and J. W. Cho, "Influence of Carbon Nanotubes and Polypyrrole on the Thermal, Mechanical and Electroactive Shape-memory Properties of Polyurethane Nanocomposites", Compos Sci Technol, 2007, 67, 1920.   DOI   ScienceOn
5 곽정춘, 이내성, "탄소나노튜브의 합성기술 동향 및 전망", 전기전자재료, 2007, 20, 27-37.
6 R. J. Chen, Y. Zhang, D. Wang, and H. Dai, "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization", J Am Chem Soc, 2001, 123, 3838-3839.   DOI   ScienceOn
7 K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, "Superhydrophobic Carbon Nanotube Forests", Nano Lett, 2003, 3, 1701-1705.   DOI   ScienceOn
8 S. Rana, N. Karak, J. W. Cho, and Y. H. Kim, "Enhanced Dispersion of Carbon Nanotubes in Hyperbranched Polyurethane and Properties of Nanocomposites", Nanotechnology, 2008, 19, 495707.1-495707.8.
9 R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, "Carbon Nanotubes-the Route Toward Applications", Science, 2002, 297, 787-792.   DOI   ScienceOn
10 M. Terrones and H. Terrones, "The Carbon Nanocosmos: Novel Materials for the Twenty-First Century", R Soc Lond A, 2003, 361, 2789-2806.   DOI   ScienceOn
11 M. Panhuis, J. Wu, S. A. Ashraf, and G. G. Wallace, "Conducting Textiles from Single-walled Carbon Nanotubes", Synthetic Metals, 2007, 157, 358-362.   DOI   ScienceOn
12 R. S. Ruoff and D. C. Lorents, "Mechanical and Thermal Properties of Carbon Nanotubes", Carbon, 1995, 33, 925- 930.   DOI   ScienceOn
13 I. Kumar, S. Rana, C. V. Rode, and J. W. Cho, "Functionalization of Single-Walled Carbon Nanotubes with Azides Derived from Amino Acids Using Click Chemistry", J Nanosci Nanotechnol, 2008, 8, 3351-3356.   DOI   ScienceOn
14 S. Iijima, "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58.   DOI
15 A. Hirsch, "Functionalization of Single-Walled Carbon Nanotubes", Angew Chem Int Ed, 2002, 41, 1853-1859.   DOI   ScienceOn
16 M. W. Marshall, S. Popa-Nita, and J. G. Shapter, "Measurement of Functionalised Carbon Nanotube Carboxylic Acid Groups Using a Simple Chemical Process", Carbon, 2007, 44, 1137-1141.
17 N. Karak, S. Rana, and J. W. Cho, "Synthesis and Characterization of Castor-oil-modified Hyperbranched Polyurethanes", J Appl Polym Sci, 2009, 112, 736-743.   DOI   ScienceOn
18 C. M. Yang, D. Y. Kim, and Y. H. Lee, "Formation of Densely Packed Single-Walled Carbon Nanotube Assembly", Chem Mater, 2005, 17,6422-6429.   DOI   ScienceOn
19 C. Hsieh, W. Chen, and J. Lin, "Synthesis of Carbon Nanotubes on Carbon Fabric for Use as Electrochemical Capacitor", Microporous Mesoporous Mater, 2009, 122, 155-159.   DOI   ScienceOn
20 T. Saito, K. Matsushige, and K. Tanaka, "Chemical Treatment and Modification of Multi-Walled Carbon Nanotubes", Phys B, 2002, 323, 280-283.   DOI   ScienceOn
21 Z. Chen, K. Kobashi, U. Rauwald, R. Booker, H. Fan, W. Hwang, and J. M. Tour, "Soluble Ultra-Short Single-Walled Carbon Nanotubes", J Am Chem Soc, 2006, 128, 10568- 10571.   DOI   ScienceOn
22 R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, "Comparative Study of Carbon Nanotube Dispersion Using Surfactants", J Colloid Interf Sci, 2008, 328, 421-428.   DOI   ScienceOn
23 D. S. Hecht, L. Hu, and G Gruner, "Electronic Properties of Carbon Nanotube/Fabric Composites", Current Appl Phys, 2007, 7, 60-63.   DOI   ScienceOn
24 Y. Liu, X. Wang, K. Qia, and J. H. Xin, "Functionalization of Cotton with Carbon Nanotubes", J Mater Chem, 2008, 18, 3454-3460.   DOI   ScienceOn
25 B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, "Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring Made by Carbon Nanotube Coating with Polyelectrolytes", Nano Lett, 2008, 8, 4151-4157.   DOI   ScienceOn
26 H. J. Park, M. Park, J. Y. Chang, and H. Lee, "The Effect of Pre-Treatment Methods on Morphology and Size Distribution of Multi-Walled Carbon Nanotubes", Nanotechnology, 2008, 19, 335702.1-335702.7.